Optimising network modelling methods for fMRI

人类连接体项目 计算机科学 连接体 人工智能 机器学习 神经影像学 静息状态功能磁共振成像 估计员 数据挖掘 模式识别(心理学) 功能连接 数学 统计 心理学 神经科学 精神科
作者
Usama Pervaiz,Diego Vidaurre,Mark W. Woolrich,Stephen M. Smith
出处
期刊:NeuroImage [Elsevier BV]
卷期号:211: 116604-116604 被引量:212
标识
DOI:10.1016/j.neuroimage.2020.116604
摘要

A major goal of neuroimaging studies is to develop predictive models to analyze the relationship between whole brain functional connectivity patterns and behavioural traits. However, there is no single widely-accepted standard pipeline for analyzing functional connectivity. The common procedure for designing functional connectivity based predictive models entails three main steps: parcellating the brain, estimating the interaction between defined parcels, and lastly, using these integrated associations between brain parcels as features fed to a classifier for predicting non-imaging variables e.g., behavioural traits, demographics, emotional measures, etc. There are also additional considerations when using correlation-based measures of functional connectivity, resulting in three supplementary steps: utilising Riemannian geometry tangent space parameterization to preserve the geometry of functional connectivity; penalizing the connectivity estimates with shrinkage approaches to handle challenges related to short time-series (and noisy) data; and removing confounding variables from brain-behaviour data. These six steps are contingent on each-other, and to optimise a general framework one should ideally examine these various methods simultaneously. In this paper, we investigated strengths and short-comings, both independently and jointly, of the following measures: parcellation techniques of four kinds (categorized further depending upon number of parcels), five measures of functional connectivity, the decision of staying in the ambient space of connectivity matrices or in tangent space, the choice of applying shrinkage estimators, six alternative techniques for handling confounds and finally four novel classifiers/predictors. For performance evaluation, we have selected two of the largest datasets, UK Biobank and the Human Connectome Project resting state fMRI data, and have run more than 9000 different pipeline variants on a total of ∼14000 individuals to determine the optimum pipeline. For independent performance validation, we have run some best-performing pipeline variants on ABIDE and ACPI datasets (∼1000 subjects) to evaluate the generalisability of proposed network modelling methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
keaid完成签到 ,获得积分10
1秒前
小包包完成签到,获得积分10
1秒前
皮代谷完成签到,获得积分10
2秒前
安和桥发布了新的文献求助10
2秒前
3秒前
思源应助鱼儿采纳,获得10
3秒前
4秒前
4秒前
义气山柳应助jinjun采纳,获得10
4秒前
JoySue完成签到,获得积分10
5秒前
1874完成签到,获得积分10
5秒前
Akim应助Dr_Zhang采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
zho应助科研通管家采纳,获得10
6秒前
suibianba应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
6秒前
6秒前
小飞七应助科研通管家采纳,获得10
6秒前
ABBAAB应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
Vicki完成签到,获得积分10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得30
7秒前
田様应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
suibianba应助科研通管家采纳,获得10
7秒前
Reybor应助科研通管家采纳,获得30
8秒前
思源应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
所所应助Hui_2023采纳,获得10
8秒前
zho应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674916
求助须知:如何正确求助?哪些是违规求助? 3230006
关于积分的说明 9788143
捐赠科研通 2940642
什么是DOI,文献DOI怎么找? 1612160
邀请新用户注册赠送积分活动 761064
科研通“疑难数据库(出版商)”最低求助积分说明 736577