生成对抗网络
对抗制
生成语法
计算机科学
人工智能
放射科
医学
模式识别(心理学)
图像(数学)
作者
Kévin Brou Boni,John Klein,L. Vanquin,Antoine Wagner,T. Lacornerie,Dominique Pasquier,N. Reynaert
标识
DOI:10.1088/1361-6560/ab7633
摘要
The establishment of an MRI-only workflow in radiotherapy depends on the ability to generate an accurate synthetic CT (sCT) for dose calculation. Previously proposed methods have used a Generative Adversarial Network (GAN) for fast sCT generation in order to simplify the clinical workflow and reduces uncertainties. In the current paper we use a conditional Generative Adversarial Network (cGAN) framework called pix2pixHD to create a robust model prone to multicenter data. This study included T2-weighted MR and CT images of 19 patients in treatment position from 3 different sites. The cGAN was trained on 2D transverse slices of 11 patients from 2 different sites. Once trained, the network was used to generate sCT images of 8 patients coming from a third site. The Mean Absolute Errors (MAE) for each patient were evaluated between real and synthetic CTs. A radiotherapy plan was optimized on the sCT series and re-calculated on CTs to assess the dose distribution in terms of voxel-wise dose difference and Dose Volume Histograms (DVH) analysis. It takes on average of [Formula: see text] to generate a complete sCT (88 slices) for a patient on our GPU. The average MAE in HU between the sCT and actual patient CT (within the body contour) is 48.5 ± 6 HU with our method. The maximum dose difference to the target is 1.3%. This study demonstrates that an sCT can be generated in a multicentric context, with fewer pre-processing steps while being fast and accurate.
科研通智能强力驱动
Strongly Powered by AbleSci AI