Hierarchical Organization of Functional Brain Networks Revealed by Hybrid Spatiotemporal Deep Learning

人类连接体项目 人工智能 计算机科学 连接体 层级组织 功能磁共振成像 深度学习 Lasso(编程语言) 系统神经科学 机器学习 神经科学 模式识别(心理学) 功能连接 心理学 髓鞘 管理 万维网 经济 少突胶质细胞 中枢神经系统
作者
Wei Zhang,Shijie Zhao,Xintao Hu,Qinglin Dong,Heng Huang,Shu Zhang,Yu Zhao,Haixing Dai,Fangfei Ge,Lei Guo,Tianming Liu
出处
期刊:Brain connectivity [Mary Ann Liebert, Inc.]
卷期号:10 (2): 72-82 被引量:19
标识
DOI:10.1089/brain.2019.0701
摘要

Hierarchical organization of brain function has been an established concept in the neuroscience field for a long time, however, it has been rarely demonstrated how such hierarchical macroscale functional networks are actually organized in the human brain. In this study, to answer this question, we propose a novel methodology to provide an evidence of hierarchical organization of functional brain networks. This article introduces the hybrid spatiotemporal deep learning (HSDL), by jointly using deep belief networks (DBNs) and deep least absolute shrinkage and selection operator (LASSO) to reveal the temporal hierarchical features and spatial hierarchical maps of brain networks based on the Human Connectome Project 900 functional magnetic resonance imaging (fMRI) data sets. Briefly, the key idea of HSDL is to extract the weights between two adjacent layers of DBNs, which are then treated as the hierarchical dictionaries for deep LASSO to identify the corresponding hierarchical spatial maps. Our results demonstrate that both spatial and temporal aspects of dozens of functional networks exhibit multiscale properties that can be well characterized and interpreted based on existing computational tools and neuroscience knowledge. Our proposed novel hybrid deep model is used to provide the first insightful opportunity to reveal the potential hierarchical organization of time series and functional brain networks, using task-based fMRI signals of human brain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
晓湫发布了新的文献求助10
刚刚
耳东陈完成签到 ,获得积分10
刚刚
1秒前
1秒前
香蕉觅云应助iMoney采纳,获得10
3秒前
小二郎应助洛阳采纳,获得10
3秒前
虚拟的海亦完成签到,获得积分0
4秒前
FashionBoy应助lyw采纳,获得10
4秒前
风姿物语完成签到,获得积分10
4秒前
4秒前
yxy发布了新的文献求助10
4秒前
语音与发布了新的文献求助10
5秒前
jingyuemingqiu完成签到 ,获得积分10
6秒前
7秒前
开心啵啵给开心啵啵的求助进行了留言
7秒前
英姑应助YY采纳,获得10
7秒前
7秒前
杨佳晨发布了新的文献求助10
8秒前
说好不吃肥肉的完成签到,获得积分10
8秒前
zzz关闭了zzz文献求助
8秒前
8秒前
9秒前
9秒前
9秒前
JamesPei应助1112678采纳,获得10
9秒前
zjj发布了新的文献求助10
10秒前
Corry完成签到,获得积分10
10秒前
yznfly应助not采纳,获得20
10秒前
搞怪网络发布了新的文献求助20
10秒前
Self完成签到,获得积分10
10秒前
lipeng发布了新的文献求助10
11秒前
小樱发布了新的文献求助10
11秒前
12秒前
22222发布了新的文献求助30
12秒前
12秒前
科研王子发布了新的文献求助10
13秒前
PAPA发布了新的文献求助10
13秒前
tecumseh发布了新的文献求助10
13秒前
搜集达人应助冷酷的可乐采纳,获得10
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961655
求助须知:如何正确求助?哪些是违规求助? 3507998
关于积分的说明 11139004
捐赠科研通 3240407
什么是DOI,文献DOI怎么找? 1790947
邀请新用户注册赠送积分活动 872683
科研通“疑难数据库(出版商)”最低求助积分说明 803306