Hierarchical Organization of Functional Brain Networks Revealed by Hybrid Spatiotemporal Deep Learning

人类连接体项目 人工智能 计算机科学 连接体 层级组织 功能磁共振成像 深度学习 Lasso(编程语言) 系统神经科学 机器学习 神经科学 模式识别(心理学) 功能连接 心理学 万维网 经济 管理 中枢神经系统 少突胶质细胞 髓鞘
作者
Wei Zhang,Shijie Zhao,Xintao Hu,Qinglin Dong,Heng Huang,Shu Zhang,Yu Zhao,Haixing Dai,Fangfei Ge,Lei Guo,Tianming Liu
出处
期刊:Brain connectivity [Mary Ann Liebert]
卷期号:10 (2): 72-82 被引量:19
标识
DOI:10.1089/brain.2019.0701
摘要

Hierarchical organization of brain function has been an established concept in the neuroscience field for a long time, however, it has been rarely demonstrated how such hierarchical macroscale functional networks are actually organized in the human brain. In this study, to answer this question, we propose a novel methodology to provide an evidence of hierarchical organization of functional brain networks. This article introduces the hybrid spatiotemporal deep learning (HSDL), by jointly using deep belief networks (DBNs) and deep least absolute shrinkage and selection operator (LASSO) to reveal the temporal hierarchical features and spatial hierarchical maps of brain networks based on the Human Connectome Project 900 functional magnetic resonance imaging (fMRI) data sets. Briefly, the key idea of HSDL is to extract the weights between two adjacent layers of DBNs, which are then treated as the hierarchical dictionaries for deep LASSO to identify the corresponding hierarchical spatial maps. Our results demonstrate that both spatial and temporal aspects of dozens of functional networks exhibit multiscale properties that can be well characterized and interpreted based on existing computational tools and neuroscience knowledge. Our proposed novel hybrid deep model is used to provide the first insightful opportunity to reveal the potential hierarchical organization of time series and functional brain networks, using task-based fMRI signals of human brain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
愉快的访旋完成签到,获得积分10
刚刚
Alpha完成签到,获得积分10
1秒前
大大发布了新的文献求助30
1秒前
翠翠发布了新的文献求助10
2秒前
半山发布了新的文献求助10
3秒前
3秒前
天天快乐应助CO2采纳,获得10
3秒前
隐形曼青应助junzilan采纳,获得10
4秒前
Dksido发布了新的文献求助10
4秒前
5秒前
思源应助卓哥采纳,获得10
5秒前
mysci完成签到,获得积分10
8秒前
9秒前
Quzhengkai发布了新的文献求助10
10秒前
10秒前
11秒前
落寞晓灵完成签到,获得积分10
11秒前
ORAzzz应助翠翠采纳,获得20
12秒前
zoe完成签到,获得积分10
12秒前
习习应助学术小白采纳,获得10
12秒前
13秒前
14秒前
tianny关注了科研通微信公众号
15秒前
15秒前
CO2发布了新的文献求助10
15秒前
桐桐应助zhangscience采纳,获得10
16秒前
求助发布了新的文献求助10
17秒前
buno应助zoe采纳,获得10
18秒前
junzilan发布了新的文献求助10
18秒前
18秒前
细品岁月完成签到 ,获得积分10
18秒前
细心书蕾完成签到 ,获得积分10
19秒前
无花果应助l11x29采纳,获得10
21秒前
21秒前
老詹头发布了新的文献求助10
21秒前
思源应助叫滚滚采纳,获得10
22秒前
23秒前
刘歌完成签到 ,获得积分10
23秒前
阿巡完成签到,获得积分10
23秒前
Chen完成签到,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808