欠采样
计算机科学
人工智能
概率逻辑
迭代重建
模式识别(心理学)
图像质量
傅里叶变换
计算机视觉
图像(数学)
数学
数学分析
作者
Shengke Xue,Zhaowei Cheng,Guangxu Han,Chaoliang Sun,Ke Fang,Yingchao Liu,Jian Cheng,Xinyu Jin,Ruiliang Bai
标识
DOI:10.1016/j.media.2021.102346
摘要
With 3D magnetic resonance imaging (MRI), a tradeoff exists between higher image quality and shorter scan time. One way to solve this problem is to reconstruct high-quality MRI images from undersampled k-space. There have been many recent studies exploring effective k-space undersampling patterns and designing MRI reconstruction methods from undersampled k-space, which are two necessary steps. Most studies separately considered these two steps, although in theory, their performance is dependent on each other. In this study, we propose a joint optimization model, trained end-to-end, to simultaneously optimize the undersampling pattern in the Fourier domain and the reconstruction model in the image domain. A 2D probabilistic undersampling layer was designed to optimize the undersampling pattern and probability distribution in a differentiable manner. A 2D inverse Fourier transform layer was implemented to connect the Fourier domain and the image domain during the forward and back propagation. Finally, we discovered an optimized relationship between the probability distribution of the undersampling pattern and its corresponding sampling rate. Further testing was performed using 3D T1-weighted MR images of the brain from the MICCAI 2013 Grand Challenge on Multi-Atlas Labeling dataset and locally acquired brain 3D T1-weighted MR images of healthy volunteers and contrast-enhanced 3D T1-weighted MR images of high-grade glioma patients. The results showed that the recovered MR images using our 2D probabilistic undersampling pattern (with or without the reconstruction network) significantly outperformed those using the existing start-of-the-art undersampling strategies for both qualitative and quantitative comparison, suggesting the advantages and some extent of the generalization of our proposed method.
科研通智能强力驱动
Strongly Powered by AbleSci AI