2D probabilistic undersampling pattern optimization for MR image reconstruction

欠采样 计算机科学 人工智能 概率逻辑 迭代重建 模式识别(心理学) 图像质量 傅里叶变换 计算机视觉 图像(数学) 数学 数学分析
作者
Shengke Xue,Zhaowei Cheng,Guangxu Han,Chaoliang Sun,Ke Fang,Yingchao Liu,Jian Cheng,Xinyu Jin,Ruiliang Bai
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:77: 102346-102346 被引量:4
标识
DOI:10.1016/j.media.2021.102346
摘要

With 3D magnetic resonance imaging (MRI), a tradeoff exists between higher image quality and shorter scan time. One way to solve this problem is to reconstruct high-quality MRI images from undersampled k-space. There have been many recent studies exploring effective k-space undersampling patterns and designing MRI reconstruction methods from undersampled k-space, which are two necessary steps. Most studies separately considered these two steps, although in theory, their performance is dependent on each other. In this study, we propose a joint optimization model, trained end-to-end, to simultaneously optimize the undersampling pattern in the Fourier domain and the reconstruction model in the image domain. A 2D probabilistic undersampling layer was designed to optimize the undersampling pattern and probability distribution in a differentiable manner. A 2D inverse Fourier transform layer was implemented to connect the Fourier domain and the image domain during the forward and back propagation. Finally, we discovered an optimized relationship between the probability distribution of the undersampling pattern and its corresponding sampling rate. Further testing was performed using 3D T1-weighted MR images of the brain from the MICCAI 2013 Grand Challenge on Multi-Atlas Labeling dataset and locally acquired brain 3D T1-weighted MR images of healthy volunteers and contrast-enhanced 3D T1-weighted MR images of high-grade glioma patients. The results showed that the recovered MR images using our 2D probabilistic undersampling pattern (with or without the reconstruction network) significantly outperformed those using the existing start-of-the-art undersampling strategies for both qualitative and quantitative comparison, suggesting the advantages and some extent of the generalization of our proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙一完成签到,获得积分10
刚刚
刚刚
bearhong完成签到,获得积分10
刚刚
刚刚
文静的峻熙完成签到,获得积分10
1秒前
刘机智完成签到,获得积分10
1秒前
球球尧伞耳完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
莫默发布了新的文献求助10
2秒前
上官若男应助故意的复天采纳,获得10
2秒前
李爱国应助叮咚鸡采纳,获得10
3秒前
忧郁寻冬完成签到,获得积分20
3秒前
3秒前
学习的苹果完成签到,获得积分10
4秒前
要减肥的芷波完成签到 ,获得积分10
4秒前
哈哈哈完成签到,获得积分10
4秒前
4秒前
4秒前
lxx完成签到,获得积分10
4秒前
4秒前
义气天真完成签到,获得积分10
5秒前
Orange应助AAA采纳,获得10
5秒前
可以读完成签到,获得积分10
5秒前
huhdcid发布了新的文献求助30
5秒前
5秒前
5秒前
F光发布了新的文献求助10
5秒前
所所应助丰富的雨寒采纳,获得10
6秒前
善学以致用应助211fjfj采纳,获得10
6秒前
悬浮窗完成签到 ,获得积分20
6秒前
6秒前
6秒前
科研小白发布了新的文献求助10
6秒前
烟花应助猪猪hero采纳,获得10
7秒前
求助人员发布了新的文献求助30
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
fffan发布了新的文献求助10
8秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619329
求助须知:如何正确求助?哪些是违规求助? 4704120
关于积分的说明 14925930
捐赠科研通 4759609
什么是DOI,文献DOI怎么找? 2550538
邀请新用户注册赠送积分活动 1513291
关于科研通互助平台的介绍 1474401