已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

2D probabilistic undersampling pattern optimization for MR image reconstruction

欠采样 计算机科学 人工智能 概率逻辑 迭代重建 模式识别(心理学) 图像质量 傅里叶变换 计算机视觉 图像(数学) 数学 数学分析
作者
Shengke Xue,Zhaowei Cheng,Guangxu Han,Chaoliang Sun,Ke Fang,Yingchao Liu,Jian Cheng,Xinyu Jin,Ruiliang Bai
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:77: 102346-102346 被引量:4
标识
DOI:10.1016/j.media.2021.102346
摘要

With 3D magnetic resonance imaging (MRI), a tradeoff exists between higher image quality and shorter scan time. One way to solve this problem is to reconstruct high-quality MRI images from undersampled k-space. There have been many recent studies exploring effective k-space undersampling patterns and designing MRI reconstruction methods from undersampled k-space, which are two necessary steps. Most studies separately considered these two steps, although in theory, their performance is dependent on each other. In this study, we propose a joint optimization model, trained end-to-end, to simultaneously optimize the undersampling pattern in the Fourier domain and the reconstruction model in the image domain. A 2D probabilistic undersampling layer was designed to optimize the undersampling pattern and probability distribution in a differentiable manner. A 2D inverse Fourier transform layer was implemented to connect the Fourier domain and the image domain during the forward and back propagation. Finally, we discovered an optimized relationship between the probability distribution of the undersampling pattern and its corresponding sampling rate. Further testing was performed using 3D T1-weighted MR images of the brain from the MICCAI 2013 Grand Challenge on Multi-Atlas Labeling dataset and locally acquired brain 3D T1-weighted MR images of healthy volunteers and contrast-enhanced 3D T1-weighted MR images of high-grade glioma patients. The results showed that the recovered MR images using our 2D probabilistic undersampling pattern (with or without the reconstruction network) significantly outperformed those using the existing start-of-the-art undersampling strategies for both qualitative and quantitative comparison, suggesting the advantages and some extent of the generalization of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
内向连碧发布了新的文献求助10
9秒前
11秒前
圆圆圆完成签到 ,获得积分10
13秒前
aiid完成签到,获得积分10
19秒前
隐形曼青应助科研通管家采纳,获得10
20秒前
20秒前
科研通AI2S应助科研通管家采纳,获得30
20秒前
20秒前
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
Ava应助科研通管家采纳,获得10
20秒前
乐乐应助云青采纳,获得10
25秒前
哭泣的若翠完成签到,获得积分10
25秒前
牛蛙丶丶完成签到,获得积分10
25秒前
活泼人生完成签到 ,获得积分10
25秒前
27秒前
you完成签到 ,获得积分10
30秒前
44秒前
孝艺完成签到 ,获得积分10
46秒前
53秒前
fly完成签到,获得积分10
59秒前
123321完成签到 ,获得积分10
1分钟前
18183389686完成签到 ,获得积分10
1分钟前
shackle完成签到,获得积分10
1分钟前
会撒娇的山蝶完成签到 ,获得积分10
1分钟前
1分钟前
fly发布了新的文献求助10
1分钟前
所所应助YiWeiYing采纳,获得30
1分钟前
圆彰七大完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
伊笙完成签到 ,获得积分10
1分钟前
1分钟前
害羞的裘发布了新的文献求助10
1分钟前
superV发布了新的文献求助10
1分钟前
娜娜发布了新的文献求助10
1分钟前
情怀应助mashichuang采纳,获得10
1分钟前
内向连碧发布了新的文献求助10
1分钟前
华仔应助娜娜采纳,获得10
1分钟前
1分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3261464
求助须知:如何正确求助?哪些是违规求助? 2902254
关于积分的说明 8319482
捐赠科研通 2572188
什么是DOI,文献DOI怎么找? 1397437
科研通“疑难数据库(出版商)”最低求助积分说明 653721
邀请新用户注册赠送积分活动 632223