2D probabilistic undersampling pattern optimization for MR image reconstruction

欠采样 计算机科学 人工智能 概率逻辑 迭代重建 模式识别(心理学) 图像质量 傅里叶变换 计算机视觉 图像(数学) 数学 数学分析
作者
Shengke Xue,Zhaowei Cheng,Guangxu Han,Chaoliang Sun,Ke Fang,Yingchao Liu,Jian Cheng,Xinyu Jin,Ruiliang Bai
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:77: 102346-102346 被引量:4
标识
DOI:10.1016/j.media.2021.102346
摘要

With 3D magnetic resonance imaging (MRI), a tradeoff exists between higher image quality and shorter scan time. One way to solve this problem is to reconstruct high-quality MRI images from undersampled k-space. There have been many recent studies exploring effective k-space undersampling patterns and designing MRI reconstruction methods from undersampled k-space, which are two necessary steps. Most studies separately considered these two steps, although in theory, their performance is dependent on each other. In this study, we propose a joint optimization model, trained end-to-end, to simultaneously optimize the undersampling pattern in the Fourier domain and the reconstruction model in the image domain. A 2D probabilistic undersampling layer was designed to optimize the undersampling pattern and probability distribution in a differentiable manner. A 2D inverse Fourier transform layer was implemented to connect the Fourier domain and the image domain during the forward and back propagation. Finally, we discovered an optimized relationship between the probability distribution of the undersampling pattern and its corresponding sampling rate. Further testing was performed using 3D T1-weighted MR images of the brain from the MICCAI 2013 Grand Challenge on Multi-Atlas Labeling dataset and locally acquired brain 3D T1-weighted MR images of healthy volunteers and contrast-enhanced 3D T1-weighted MR images of high-grade glioma patients. The results showed that the recovered MR images using our 2D probabilistic undersampling pattern (with or without the reconstruction network) significantly outperformed those using the existing start-of-the-art undersampling strategies for both qualitative and quantitative comparison, suggesting the advantages and some extent of the generalization of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nulinuli完成签到 ,获得积分10
1秒前
AHR发布了新的文献求助10
1秒前
星辰大海应助huazhenzhen采纳,获得20
2秒前
可靠的傲儿完成签到,获得积分10
2秒前
greeeetwist完成签到,获得积分10
3秒前
Sue发布了新的文献求助10
3秒前
今天也要开心Y完成签到,获得积分10
4秒前
虚幻的彤发布了新的文献求助10
5秒前
贰鸟应助乔er一采纳,获得10
5秒前
6秒前
6秒前
zss完成签到,获得积分10
6秒前
WIsh完成签到 ,获得积分10
7秒前
纳纳椰完成签到,获得积分10
7秒前
9秒前
Fanbio完成签到 ,获得积分10
9秒前
新新发布了新的文献求助30
9秒前
超帅连虎发布了新的文献求助10
9秒前
犇骉发布了新的文献求助10
10秒前
ff完成签到 ,获得积分10
11秒前
LaTeXer应助Pam采纳,获得200
11秒前
Niki完成签到,获得积分10
11秒前
玩命的朋友完成签到,获得积分10
11秒前
蛋黄苏完成签到,获得积分10
11秒前
CasterL完成签到,获得积分10
12秒前
Albert完成签到,获得积分10
12秒前
小小蚂蚁发布了新的文献求助10
12秒前
12秒前
12秒前
61forsci发布了新的文献求助10
13秒前
打打应助非常六加一采纳,获得10
13秒前
ding应助想人陪的向南采纳,获得10
13秒前
扎心应助yyy采纳,获得10
14秒前
郭郭发布了新的文献求助10
14秒前
15秒前
机智的大船完成签到,获得积分10
16秒前
hh完成签到,获得积分10
16秒前
shenxian82133完成签到,获得积分10
16秒前
17秒前
17秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961408
求助须知:如何正确求助?哪些是违规求助? 3507744
关于积分的说明 11137921
捐赠科研通 3240204
什么是DOI,文献DOI怎么找? 1790848
邀请新用户注册赠送积分活动 872587
科研通“疑难数据库(出版商)”最低求助积分说明 803288