A new predicting model of preeclampsia based on peripheral blood test value.

子痫前期 医学 天冬氨酸转氨酶 内科学 血尿素氮 肌酐 胱抑素C 逻辑回归 纤维蛋白原 平均血小板体积 产科 尿酸 胃肠病学 肾功能 胎龄 内分泌学 怀孕 血小板 碱性磷酸酶 生物 遗传学 生物化学
作者
Qianqian Han,Wenfei Zheng,Xiao Guo,D Zhang,Liu Hf,Yu Lan,Jian Yan
出处
期刊:European Review for Medical and Pharmacological Sciences [Verduci Editore]
卷期号:24 (13): 7222-7229 被引量:5
标识
DOI:10.26355/eurrev_202007_21874
摘要

Objective To identify laboratory markers among platelet indices, coagulation parameters, blood lipid parameters, and liver/kidney function variables that can be used to predict preeclampsia. Patients and methods We studied records of 568 women with preeclampsia, gestational hypertension (GH), or normal term pregnancies hospitalized in the Obstetrics Department of the Fujian Maternal and Child Health Hospital from September 2014 to September 2018. We divided the patients' records into three groups (216 with preeclampsia, 136 with gestational hypertension, and 216 with normal pregnancies). We conducted retrospective analyses to compare variable measurements between the groups and find correlations. We looked into maternal pre-onset platelet indices, coagulation parameters (thrombin time [TT], fibrinogen [FIB]), biochemical parameters (total cholesterol [TC], triglycerides [TG], high-density lipoproteins [HDL], alanine transaminase [ALT], serum creatinine [CRE], blood urea nitrogen [BUN], uric acid [UA]), maternal complications, and perinatal outcomes. In addition to our statistical analysis, we trained a back-propagation (BP) neural network to identify the strongest predictors of preeclampsia. Results We found significant differences among the groups in terms of values for PLT, MPV, PDW, PLCR, TT, FIB, TG, LDH, BUN, and others. After adjusting for confounding factors in a multivariate ordered logistic regression model, we found that mean values for MPV, BUN, TG, and LDH can independently predict the risk of preeclampsia (the OR values were 1.858, 1.583, 1.104, and 1.020, respectively), the C-index (concordance statistic) was 0.73. Also, our BP neural network derived ALB, MPV, BUN, LDH and TG as the strongest predictors of preeclampsia. Conclusions MPV, TG, LDH, and BUN can help establish the risk for the development of preeclampsia to apply active measures and improve maternal and perinatal outcomes. The BP neural network can be used to study predictive models of preeclampsia.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周新哲完成签到 ,获得积分10
刚刚
科研通AI5应助vansama采纳,获得10
刚刚
刚刚
Owen应助黄林旋采纳,获得10
1秒前
2秒前
琼仔仔发布了新的文献求助10
2秒前
2秒前
牛马人儿完成签到,获得积分10
2秒前
Parrot_PAI发布了新的文献求助10
3秒前
3秒前
4秒前
书生发布了新的文献求助30
4秒前
碧蓝世立发布了新的文献求助10
5秒前
悦耳妙旋应助zhy采纳,获得10
5秒前
汉堡包应助缥缈的紫槐采纳,获得30
5秒前
迷人雅容完成签到,获得积分10
6秒前
6秒前
开放金鱼发布了新的文献求助10
7秒前
顺其自然_666888完成签到,获得积分10
7秒前
小刘发布了新的文献求助10
7秒前
SYLH应助du1999采纳,获得10
8秒前
CIOOICO1发布了新的文献求助10
8秒前
酷波er应助贪玩手链采纳,获得10
8秒前
9秒前
9秒前
昭玥完成签到,获得积分10
10秒前
科研通AI5应助小思采纳,获得10
10秒前
忐忑的源智完成签到,获得积分20
11秒前
shanshan发布了新的文献求助10
11秒前
王鹏程发布了新的文献求助10
12秒前
12秒前
13秒前
14秒前
14秒前
科研通AI5应助chun采纳,获得10
15秒前
15秒前
轻松青亦发布了新的文献求助10
16秒前
王鹏程完成签到,获得积分10
16秒前
17秒前
科研通AI2S应助送外卖了采纳,获得10
17秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842227
求助须知:如何正确求助?哪些是违规求助? 3384336
关于积分的说明 10534304
捐赠科研通 3104803
什么是DOI,文献DOI怎么找? 1709801
邀请新用户注册赠送积分活动 823377
科研通“疑难数据库(出版商)”最低求助积分说明 774048