Survival differences between chemotherapy and chemoradiotherapy in metastatic esophageal cancer: a propensity score-matched study based on the SEER database

医学 内科学 肿瘤科 倾向得分匹配 混淆 放化疗 监测、流行病学和最终结果 食管癌 子群分析 流行病学 比例危险模型 病态的 多元分析 癌症 癌症登记处 荟萃分析
作者
Yue Shao,Min Zhang,Liu Ye,Dan Chen,Qingchen Wu,Cheng Zhang
出处
期刊:Annals of palliative medicine [AME Publishing Company]
卷期号:10 (4): 3826-3835 被引量:2
标识
DOI:10.21037/apm-20-2126
摘要

Background: The aim of this study was to explore the impact of chemotherapy (CT) and chemoradiotherapy (CRT) on prognosis in metastatic esophageal cancer (mEC) patients.Methods: Information of patients with mEC from 2010 to 2016 was retrieved from the Surveillance, Epidemiology, and End Results (SEER) database. Demographic and clinical data between CT and CRT groups were compared. Propensity score matching (PSM) analysis was used to reduce the influence of potential confounding factors. Multivariate Cox regression analysis was used to evaluate prognostic factors. Moreover, interaction tests and survival analyses were performed to determine whether pathological type conferred any survival benefits in subgroups.Results: A total of 3,352 mEC patients were recruited including 1,697 CT patients and 1,655 CRT patients. In multivariable Cox regression, marital status, gender and pathological type were identified as independent prognostic factors for mEC. There was no statistical significance between the CT group and CRT group in overall survival (OS) and cancer-specific survival (CSS) in the matched and unmatched cohort. In subgroup analyses, patients with esophageal adenocarcinoma (EAC) undergoing CT had favorable prognosis. However, in the subgroup of esophageal squamous cell carcinoma (ESCC), patients in the CT group had worse outcomes compared with patients in the CRT group.Conclusions: Patients with EAC and ESCC could respectively benefit from CT and CRT. Besides, we recommend individualizing the treatment strategy for mEC based on the pathological type.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yon完成签到 ,获得积分10
刚刚
呆头完成签到,获得积分10
刚刚
科研通AI5应助skier采纳,获得10
1秒前
ywang发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
keyantong完成签到 ,获得积分10
7秒前
booshu完成签到,获得积分10
8秒前
jy发布了新的文献求助10
9秒前
朴斓完成签到,获得积分10
9秒前
科研通AI5应助魏伯安采纳,获得10
12秒前
哈密哈密完成签到,获得积分10
12秒前
12秒前
Ava应助浪迹天涯采纳,获得10
12秒前
13秒前
安南发布了新的文献求助10
13秒前
14秒前
healthy完成签到 ,获得积分10
14秒前
15秒前
刘大可完成签到,获得积分10
15秒前
18秒前
su发布了新的文献求助10
18秒前
rookie发布了新的文献求助10
19秒前
方勇飞发布了新的文献求助10
20秒前
郭菱香完成签到 ,获得积分20
20秒前
皮念寒完成签到,获得积分10
20秒前
顺其自然_666888完成签到,获得积分10
20秒前
21秒前
向上的小v完成签到 ,获得积分10
22秒前
22秒前
24秒前
酷酷紫蓝完成签到 ,获得积分10
24秒前
24秒前
方勇飞完成签到,获得积分10
24秒前
LYZ完成签到,获得积分10
24秒前
黄景滨完成签到 ,获得积分20
25秒前
25秒前
123456完成签到,获得积分20
25秒前
hkl1542完成签到,获得积分10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824