The objective of this study was to develop chemically bonded phosphate ceramic (CBPC) coatings with relatively low curing temperature, properly prolonged curing time, and enhanced oxidation resistance. The coating was synthesised using aluminium phosphate as binder, surface modified MgOw/MgO as curing agent, and spherical microscaled Al particle as filler. The MgOw/MgO curing agent was surface coated by an Al2O3 layer via sol-gel routes. The Al2O3-coated MgOw/MgO agent facilitated a controllable curing process owing to the sustained-release effect of the surrounding microstructure. The weight loss profiles of all CBPCs with a surface modified curing agent exhibited a quasi-parabolic trend. The curing time decreased with the addition of the curing agent, and the Al2O3-coated MgOw curing agent was more effective owing to the good dispersion and larger particle number/volume percentage. The thermogravimetric and differential scanning calorimetry curves proved that the Al element exhibited similar effect as Mg2+, which could also enhance the curing process via substitution reaction between the basic metal ions with hydrogen in phosphate. Therefore, the addition of Al filler resulted in further curing and densification, exhibiting a decrease in the curing time (30–50 min) and increase in the weight loss (~40%). Proper binder-to-curing agent-to-filler mass (B:C:F) ratio was very important, and the CBPCs with improved surface roughness, hardness, and free of cracks were synthesised at a B:C:F ratio of 10:1:0.05. During oxidation at 800 °C, the Al filler in the CBPCs transformed into a continuous Al2O3 layer, which protected the Ti6Al4V alloy from further oxidation.