Promoting Active Sites for Hydrogen Evolution in MoSe2 via Transition-Metal Doping

过电位 空位缺陷 材料科学 过渡金属 兴奋剂 化学物理 催化作用 密度泛函理论 结晶学 金属 掺杂剂 无机化学 化学 电化学 物理化学 计算化学 冶金 光电子学 有机化学 生物化学 电极
作者
Akash Jain,Maya Bar‐Sadan,Ashwin Ramasubramaniam
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:124 (23): 12324-12336 被引量:44
标识
DOI:10.1021/acs.jpcc.0c00013
摘要

Molybdenum diselenide (MoSe2)—a transition-metal dichalcogenide—is a promising nonprecious metal catalyst for the hydrogen evolution reaction (HER). However, practical application of MoSe2 for electrocatalytic HER is hindered by its poor electrical conductivity, its high overpotential, and the limited number of active sites. Specifically, while the edges of MoSe2 are highly active for HER, the basal plane, which constitutes most of the catalyst surface, is inert toward HER. Although prior studies have focused on improving the activity of MoSe2 either by promoting the formation of highly active basal-plane Se vacancies or by substitutional doping of metal atoms, the interaction between dopants and Se vacancies—whether beneficial or detrimental toward HER—has not been fully understood. Here, we employ density functional theory calculations to study the interplay between prototypical transition metal (TM) dopants (Mn, Fe, Co, and Ni) and Se vacancies, and the consequent influence on hydrogen adsorption (a descriptor of HER activity in acidic media) at basal planes, edges, and Se vacancy sites. We correlate trends in the free energies of hydrogen adsorption and Se vacancy formation with changes in the electronic structure of MoSe2 upon TM doping as well as structural changes arising because of TM dopant atoms. Broadly, our studies show that the studied electron-rich TM dopants favorably modify the electronic structure of MoSe2 basal planes toward HER and, additionally, electrochemical generation of Se vacancies becomes more facile on the doped basal plane and edges at smaller cathodic potentials. These newly formed Se vacancies are typically highly active toward HER and substitutional doping can be viewed as an avenue for defect-mediated activation of MoSe2.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
多多发布了新的文献求助30
1秒前
asdfzxcv应助DomeDmom采纳,获得10
1秒前
赘婿应助QQQ采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
BowieHuang应助孙尼美采纳,获得10
2秒前
Hello应助孙尼美采纳,获得10
2秒前
33完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
4秒前
xy发布了新的文献求助10
4秒前
曾哥帅发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
核桃发布了新的文献求助10
6秒前
lidinf发布了新的文献求助10
6秒前
yangbo666发布了新的文献求助10
7秒前
蜜桃乌龙完成签到,获得积分20
7秒前
zhuyanqi完成签到,获得积分10
8秒前
8秒前
xy完成签到,获得积分10
9秒前
QQQ11发布了新的文献求助10
9秒前
ANCY发布了新的文献求助30
9秒前
cc发布了新的文献求助10
10秒前
111发布了新的文献求助10
10秒前
10秒前
科研通AI6应助可爱的芷云采纳,获得10
10秒前
wencan发布了新的文献求助10
11秒前
12秒前
糖焗小馒头完成签到,获得积分10
12秒前
优美凡白发布了新的文献求助10
12秒前
无花果应助li采纳,获得10
13秒前
雪白依云完成签到,获得积分10
13秒前
15秒前
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Research Handbook on Social Interaction 1000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5656628
求助须知:如何正确求助?哪些是违规求助? 4804442
关于积分的说明 15076544
捐赠科研通 4814884
什么是DOI,文献DOI怎么找? 2576051
邀请新用户注册赠送积分活动 1531356
关于科研通互助平台的介绍 1489936