红外线的
光电子学
探测器
多光谱图像
光学
材料科学
量子点
光电探测器
夜视
比探测率
红外探测器
暗电流
物理
遥感
地质学
作者
Xin Tang,Matthew M. Ackerman,Philippe Guyot‐Sionnest
摘要
Flexible infrared detectors with multispectral imaging capability are attracting great interest with increasing demand for sensitive, low-cost and scalable devices that can distinguish coincident spectral information and achieve wide field of view, low aberrations, and simple imaging optics at the same time. However, the widespread use of such detectors is still limited by the high cost of epitaxial semiconductors like HgCdTe, InSb, and InGaAs. In contrast, the solution-processability, mechanical flexibility and wide spectral tunability of colloidal quantum dots (CQDs) have inspired various inexpensive, high-performance optoelectronic devices covering important atmospheric windows from short-wave infrared (SWIR, 1.5 – 2.5 μm) to mid-wave infrared (MWIR 3 – 5 μm). Here, a potential route leading to flexible infrared electronic eyes with multispectral imaging capability is demonstrated by exploring HgTe CQDs photovoltaic detectors. At room temperature, the HgTe CQDs detectors demonstrate detectivity D* up to 6 × 1010 Jones in SWIR and 6.5 × 108 Jones in MWIR. At cryogenic temperature, the MWIR D* becomes BLIP and increases to 1 × 1011 Jones. Besides high D* , the HgTe CQDs detector shows fast response with rise time below 300 ns. By stacking CQDs with different energy gaps or coupling CQDs with tunable optical filters, dual-band and multi-band infrared detection can be achieved in wide spectral ranges. Finally, infrared images are captured with flexible HgTe CQDs detectors at varying bending curvatures, showing a practical approach to sensitive infrared electronic eyes beyond the visible range.
科研通智能强力驱动
Strongly Powered by AbleSci AI