Marine Predators Algorithm: A nature-inspired metaheuristic

元启发式 计算机科学 算法 捕食 竞赛(生物学) 觅食 数学优化 生态学 数学 生物
作者
Afshin Faramarzi,Mohammad Heidarinejad,Seyedali Mirjalili,Amir H. Gandomi
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:152: 113377-113377 被引量:2112
标识
DOI:10.1016/j.eswa.2020.113377
摘要

This paper presents a nature-inspired metaheuristic called Marine Predators Algorithm (MPA) and its application in engineering. The main inspiration of MPA is the widespread foraging strategy namely Lévy and Brownian movements in ocean predators along with optimal encounter rate policy in biological interaction between predator and prey. MPA follows the rules that naturally govern in optimal foraging strategy and encounters rate policy between predator and prey in marine ecosystems. This paper evaluates the MPA's performance on twenty-nine test functions, test suite of CEC-BC-2017, randomly generated landscape, three engineering benchmarks, and two real-world engineering design problems in the areas of ventilation and building energy performance. MPA is compared with three classes of existing optimization methods, including (1) GA and PSO as the most well-studied metaheuristics, (2) GSA, CS and SSA as almost recently developed algorithms and (3) CMA-ES, SHADE and LSHADE-cnEpSin as high performance optimizers and winners of IEEE CEC competition. Among all methods, MPA gained the second rank and demonstrated very competitive results compared to LSHADE-cnEpSin as the best performing method and one of the winners of CEC 2017 competition. The statistical post hoc analysis revealed that MPA can be nominated as a high-performance optimizer and is a significantly superior algorithm than GA, PSO, GSA, CS, SSA and CMA-ES while its performance is statistically similar to SHADE and LSHADE-cnEpSin. The source code is publicly available at: https://github.com/afshinfaramarzi/Marine-Predators-Algorithm, http://built-envi.com/portfolio/marine-predators-algorithm/, https://www.mathworks.com/matlabcentral/fileexchange/74578-marine-predators-algorithm-mpa, and http://www.alimirjalili.com/MPA.html.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
passion关注了科研通微信公众号
刚刚
wangqianyu完成签到,获得积分20
刚刚
所所应助无奈世立采纳,获得10
1秒前
cyy发布了新的文献求助10
2秒前
2秒前
甜甜发布了新的文献求助10
2秒前
2秒前
3秒前
yang12345678发布了新的文献求助10
3秒前
岁华完成签到,获得积分10
3秒前
lvlv发布了新的文献求助10
4秒前
尹忆梅完成签到,获得积分10
4秒前
白白完成签到 ,获得积分10
4秒前
4秒前
4秒前
5秒前
Ethan发布了新的文献求助10
5秒前
君知行完成签到,获得积分10
6秒前
6秒前
元谷雪发布了新的文献求助10
6秒前
欢呼的怀蝶完成签到,获得积分10
6秒前
地球发布了新的文献求助10
7秒前
7秒前
七科栗子发布了新的文献求助10
8秒前
8秒前
无花果应助xia采纳,获得10
9秒前
惊火完成签到,获得积分20
9秒前
wangwenzhe发布了新的文献求助10
10秒前
WCR完成签到 ,获得积分10
10秒前
10秒前
甜甜完成签到,获得积分10
10秒前
孟一帆完成签到,获得积分10
10秒前
12秒前
小七啊发布了新的文献求助10
12秒前
lkk发布了新的文献求助10
12秒前
Owen应助平凡的世界采纳,获得10
12秒前
12秒前
今后应助瘦瘦的问安采纳,获得10
13秒前
田様应助开心易真采纳,获得10
13秒前
Bonnienuit完成签到 ,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5319859
求助须知:如何正确求助?哪些是违规求助? 4461827
关于积分的说明 13884803
捐赠科研通 4352481
什么是DOI,文献DOI怎么找? 2390628
邀请新用户注册赠送积分活动 1384354
关于科研通互助平台的介绍 1354131