亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Marine Predators Algorithm: A nature-inspired metaheuristic

元启发式 计算机科学 算法 捕食 竞赛(生物学) 觅食 数学优化 生态学 数学 生物
作者
Afshin Faramarzi,Mohammad Heidarinejad,Seyedali Mirjalili,Amir H. Gandomi
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:152: 113377-113377 被引量:1604
标识
DOI:10.1016/j.eswa.2020.113377
摘要

This paper presents a nature-inspired metaheuristic called Marine Predators Algorithm (MPA) and its application in engineering. The main inspiration of MPA is the widespread foraging strategy namely Lévy and Brownian movements in ocean predators along with optimal encounter rate policy in biological interaction between predator and prey. MPA follows the rules that naturally govern in optimal foraging strategy and encounters rate policy between predator and prey in marine ecosystems. This paper evaluates the MPA's performance on twenty-nine test functions, test suite of CEC-BC-2017, randomly generated landscape, three engineering benchmarks, and two real-world engineering design problems in the areas of ventilation and building energy performance. MPA is compared with three classes of existing optimization methods, including (1) GA and PSO as the most well-studied metaheuristics, (2) GSA, CS and SSA as almost recently developed algorithms and (3) CMA-ES, SHADE and LSHADE-cnEpSin as high performance optimizers and winners of IEEE CEC competition. Among all methods, MPA gained the second rank and demonstrated very competitive results compared to LSHADE-cnEpSin as the best performing method and one of the winners of CEC 2017 competition. The statistical post hoc analysis revealed that MPA can be nominated as a high-performance optimizer and is a significantly superior algorithm than GA, PSO, GSA, CS, SSA and CMA-ES while its performance is statistically similar to SHADE and LSHADE-cnEpSin. The source code is publicly available at: https://github.com/afshinfaramarzi/Marine-Predators-Algorithm, http://built-envi.com/portfolio/marine-predators-algorithm/, https://www.mathworks.com/matlabcentral/fileexchange/74578-marine-predators-algorithm-mpa, and http://www.alimirjalili.com/MPA.html.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助超级雅霜采纳,获得10
3秒前
4秒前
超级雅霜完成签到,获得积分10
6秒前
joanna完成签到,获得积分10
8秒前
哭泣秋蝶发布了新的文献求助10
10秒前
Ze萍完成签到 ,获得积分10
10秒前
怕黑行恶完成签到,获得积分10
12秒前
15秒前
16秒前
循循完成签到,获得积分10
17秒前
超级雅霜发布了新的文献求助10
21秒前
洒脱完成签到,获得积分10
23秒前
CipherSage应助韶纹采纳,获得10
24秒前
27秒前
十一完成签到 ,获得积分10
37秒前
42秒前
毛毛猫完成签到 ,获得积分10
1分钟前
1分钟前
强健的电源完成签到,获得积分10
1分钟前
Mottri完成签到 ,获得积分10
1分钟前
1分钟前
766465完成签到 ,获得积分10
1分钟前
小耿完成签到 ,获得积分10
1分钟前
斯文败类应助结实的虔纹采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
wbs13521完成签到,获得积分10
1分钟前
YifanWang应助科研通管家采纳,获得30
1分钟前
philo发布了新的文献求助10
1分钟前
JamesPei应助philo采纳,获得10
1分钟前
招水若离完成签到,获得积分10
2分钟前
无敌石墨烯完成签到 ,获得积分10
2分钟前
poiny完成签到,获得积分20
2分钟前
阿南完成签到 ,获得积分10
2分钟前
科研狗的春天完成签到 ,获得积分10
2分钟前
科研完成签到,获得积分10
2分钟前
烟花应助AA采纳,获得10
2分钟前
L_MD完成签到,获得积分10
2分钟前
科研发布了新的文献求助10
2分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136993
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784040
捐赠科研通 2444012
什么是DOI,文献DOI怎么找? 1299609
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600989