Marine Predators Algorithm: A nature-inspired metaheuristic

元启发式 计算机科学 算法 捕食 竞赛(生物学) 觅食 数学优化 生态学 数学 生物
作者
Afshin Faramarzi,Mohammad Heidarinejad,Seyedali Mirjalili,Amir H. Gandomi
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:152: 113377-113377 被引量:1604
标识
DOI:10.1016/j.eswa.2020.113377
摘要

This paper presents a nature-inspired metaheuristic called Marine Predators Algorithm (MPA) and its application in engineering. The main inspiration of MPA is the widespread foraging strategy namely Lévy and Brownian movements in ocean predators along with optimal encounter rate policy in biological interaction between predator and prey. MPA follows the rules that naturally govern in optimal foraging strategy and encounters rate policy between predator and prey in marine ecosystems. This paper evaluates the MPA's performance on twenty-nine test functions, test suite of CEC-BC-2017, randomly generated landscape, three engineering benchmarks, and two real-world engineering design problems in the areas of ventilation and building energy performance. MPA is compared with three classes of existing optimization methods, including (1) GA and PSO as the most well-studied metaheuristics, (2) GSA, CS and SSA as almost recently developed algorithms and (3) CMA-ES, SHADE and LSHADE-cnEpSin as high performance optimizers and winners of IEEE CEC competition. Among all methods, MPA gained the second rank and demonstrated very competitive results compared to LSHADE-cnEpSin as the best performing method and one of the winners of CEC 2017 competition. The statistical post hoc analysis revealed that MPA can be nominated as a high-performance optimizer and is a significantly superior algorithm than GA, PSO, GSA, CS, SSA and CMA-ES while its performance is statistically similar to SHADE and LSHADE-cnEpSin. The source code is publicly available at: https://github.com/afshinfaramarzi/Marine-Predators-Algorithm, http://built-envi.com/portfolio/marine-predators-algorithm/, https://www.mathworks.com/matlabcentral/fileexchange/74578-marine-predators-algorithm-mpa, and http://www.alimirjalili.com/MPA.html.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jasmineee完成签到,获得积分10
刚刚
lurenjia009发布了新的文献求助10
刚刚
Orange应助小橙子采纳,获得10
刚刚
iiing完成签到 ,获得积分10
1秒前
想跟这个世界讲个道理完成签到,获得积分10
1秒前
1秒前
1秒前
Eva发布了新的文献求助10
2秒前
张有志应助本杰明采纳,获得30
2秒前
Dandelion完成签到,获得积分10
2秒前
完美世界应助葛辉辉采纳,获得10
3秒前
龙泉完成签到 ,获得积分10
3秒前
Khr1stINK发布了新的文献求助20
3秒前
美女发布了新的文献求助10
3秒前
汉堡包应助烫嘴普通话采纳,获得10
3秒前
长颈鹿完成签到,获得积分10
5秒前
Koi完成签到,获得积分10
5秒前
打卤完成签到,获得积分10
5秒前
CodeCraft应助Intro采纳,获得10
6秒前
SciGPT应助cat采纳,获得10
6秒前
Minkslion发布了新的文献求助10
6秒前
7秒前
酷波er应助细腻的麦片采纳,获得10
8秒前
lurenjia009完成签到,获得积分10
9秒前
9秒前
科研通AI5应助huangyi采纳,获得10
10秒前
yxy完成签到,获得积分10
10秒前
Orange应助yam001采纳,获得30
10秒前
10秒前
竹斟酒完成签到,获得积分10
11秒前
11秒前
11秒前
请叫我风吹麦浪应助Wxd0211采纳,获得10
11秒前
11秒前
11秒前
深情安青应助美女采纳,获得10
12秒前
111完成签到,获得积分10
12秒前
葛辉辉完成签到,获得积分10
13秒前
kangkang发布了新的文献求助10
13秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762