Marine Predators Algorithm: A nature-inspired metaheuristic

元启发式 计算机科学 算法 捕食 竞赛(生物学) 觅食 数学优化 生态学 数学 生物
作者
Afshin Faramarzi,Mohammad Heidarinejad,Seyedali Mirjalili,Amir H. Gandomi
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:152: 113377-113377 被引量:1800
标识
DOI:10.1016/j.eswa.2020.113377
摘要

This paper presents a nature-inspired metaheuristic called Marine Predators Algorithm (MPA) and its application in engineering. The main inspiration of MPA is the widespread foraging strategy namely Lévy and Brownian movements in ocean predators along with optimal encounter rate policy in biological interaction between predator and prey. MPA follows the rules that naturally govern in optimal foraging strategy and encounters rate policy between predator and prey in marine ecosystems. This paper evaluates the MPA's performance on twenty-nine test functions, test suite of CEC-BC-2017, randomly generated landscape, three engineering benchmarks, and two real-world engineering design problems in the areas of ventilation and building energy performance. MPA is compared with three classes of existing optimization methods, including (1) GA and PSO as the most well-studied metaheuristics, (2) GSA, CS and SSA as almost recently developed algorithms and (3) CMA-ES, SHADE and LSHADE-cnEpSin as high performance optimizers and winners of IEEE CEC competition. Among all methods, MPA gained the second rank and demonstrated very competitive results compared to LSHADE-cnEpSin as the best performing method and one of the winners of CEC 2017 competition. The statistical post hoc analysis revealed that MPA can be nominated as a high-performance optimizer and is a significantly superior algorithm than GA, PSO, GSA, CS, SSA and CMA-ES while its performance is statistically similar to SHADE and LSHADE-cnEpSin. The source code is publicly available at: https://github.com/afshinfaramarzi/Marine-Predators-Algorithm, http://built-envi.com/portfolio/marine-predators-algorithm/, https://www.mathworks.com/matlabcentral/fileexchange/74578-marine-predators-algorithm-mpa, and http://www.alimirjalili.com/MPA.html.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怡然雁凡完成签到,获得积分10
刚刚
火龙果发布了新的文献求助10
刚刚
泽泽完成签到,获得积分10
刚刚
未来完成签到,获得积分10
刚刚
鲸鲸发布了新的文献求助30
1秒前
1秒前
supertkeb完成签到,获得积分10
1秒前
羲和完成签到,获得积分10
1秒前
2秒前
Lucas应助刘岩松采纳,获得10
2秒前
2秒前
3秒前
xiaofan完成签到,获得积分20
3秒前
宋二庆完成签到,获得积分10
3秒前
3秒前
咸鱼好忙发布了新的文献求助30
4秒前
无情的函发布了新的文献求助10
4秒前
小巧吐司发布了新的文献求助10
4秒前
小王完成签到,获得积分10
4秒前
咖啡豆完成签到,获得积分10
4秒前
小吴完成签到,获得积分10
5秒前
潦草小狗完成签到,获得积分10
5秒前
5秒前
6秒前
神勇雨双完成签到,获得积分10
6秒前
6秒前
阿玉发布了新的文献求助10
6秒前
7秒前
科研小菜完成签到,获得积分10
7秒前
7秒前
李健应助古月采纳,获得10
7秒前
lic完成签到,获得积分10
7秒前
8秒前
科研通AI2S应助小王采纳,获得10
8秒前
8秒前
yydragen应助XHT采纳,获得30
9秒前
橙汁完成签到,获得积分20
9秒前
结实缘郡完成签到,获得积分10
9秒前
深情安青应助对照采纳,获得10
9秒前
rain完成签到 ,获得积分10
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600