An interactive feature selection method based on learning-from-crowds

特征选择 计算机科学 集成学习 人工智能 特征(语言学) 排名(信息检索) 机器学习 选择(遗传算法) 人群 模式识别(心理学) 数据挖掘 集合(抽象数据类型) 计算机安全 语言学 哲学 程序设计语言
作者
Liu Jiang,Shi‐Xia Liu,Na Lei,Changjian Chen
出处
期刊:Zhongguo kexue [Science in China Press]
卷期号:50 (6): 794-812 被引量:1
标识
DOI:10.1360/ssi-2019-0208
摘要

Ensemble feature selection algorithms aggregate the results of multiple feature selection methods in order to select an effective subset of features. However, typically, ensemble algorithms treat each feature selection method equally and do not consider performance differences. Consequently, features selected by a relatively smaller number of methods may not be included. To address this problem, we propose an interactive feature selection method that can more effectively aggregate the results of multiple feature selection methods and iteratively improve the selected features by integrating expert knowledge. The proposed method includes a learning-from-crowds-based ensemble feature selection algorithm and a visual analysis system. The algorithm models the performance of multiple feature selection methods, calculates their reliabilities, and aggregates results. To integrate expert knowledge, the visual analysis system provides a set of ranking schemes to assist experts in understanding the results of an individual feature selection method and the roles played by the features in classification tasks. A numerical experiment conducted on four real-world datasets shows that the proposed algorithm can improve classification accuracy by 0.63%–2.85% compared to state-of-the-art ensemble feature selection algorithms. In addition, we conducted case studies on text and image data to demonstrate that the proposed visual analysis system can further improve classification accuracy by 0.28%–5.24%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
mfstone发布了新的文献求助10
1秒前
LiLi完成签到,获得积分10
2秒前
仁爱的老四完成签到 ,获得积分10
3秒前
李健的小迷弟应助学术z采纳,获得10
3秒前
科研通AI5应助归海紫翠采纳,获得30
4秒前
热情的初兰完成签到 ,获得积分10
5秒前
顺顺完成签到,获得积分10
5秒前
莫妮卡卡完成签到,获得积分10
5秒前
nbing完成签到,获得积分10
6秒前
SCI发布了新的文献求助50
6秒前
小猫多鱼完成签到,获得积分10
7秒前
7秒前
7秒前
默默尔烟发布了新的文献求助10
7秒前
7秒前
7秒前
宁静致远完成签到,获得积分10
7秒前
天天快乐应助内向秋寒采纳,获得10
10秒前
sfafasfsdf完成签到,获得积分10
10秒前
10秒前
luuuuuu发布了新的文献求助10
11秒前
lai发布了新的文献求助30
11秒前
11秒前
zrk发布了新的文献求助10
11秒前
11秒前
12秒前
ZJJ完成签到,获得积分10
12秒前
花开的声音1217完成签到,获得积分10
13秒前
古药完成签到,获得积分10
14秒前
赘婿应助烟雨行舟采纳,获得10
14秒前
seal发布了新的文献求助10
15秒前
15秒前
16秒前
不吃香菜发布了新的文献求助10
16秒前
RC_Wang应助ZJJ采纳,获得10
16秒前
Chridy发布了新的文献求助10
17秒前
17秒前
asipilin完成签到,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794