An interactive feature selection method based on learning-from-crowds

特征选择 计算机科学 集成学习 人工智能 特征(语言学) 排名(信息检索) 机器学习 选择(遗传算法) 人群 模式识别(心理学) 数据挖掘 集合(抽象数据类型) 计算机安全 语言学 哲学 程序设计语言
作者
Liu Jiang,Shi‐Xia Liu,Na Lei,Changjian Chen
出处
期刊:Zhongguo kexue [Science in China Press]
卷期号:50 (6): 794-812 被引量:1
标识
DOI:10.1360/ssi-2019-0208
摘要

Ensemble feature selection algorithms aggregate the results of multiple feature selection methods in order to select an effective subset of features. However, typically, ensemble algorithms treat each feature selection method equally and do not consider performance differences. Consequently, features selected by a relatively smaller number of methods may not be included. To address this problem, we propose an interactive feature selection method that can more effectively aggregate the results of multiple feature selection methods and iteratively improve the selected features by integrating expert knowledge. The proposed method includes a learning-from-crowds-based ensemble feature selection algorithm and a visual analysis system. The algorithm models the performance of multiple feature selection methods, calculates their reliabilities, and aggregates results. To integrate expert knowledge, the visual analysis system provides a set of ranking schemes to assist experts in understanding the results of an individual feature selection method and the roles played by the features in classification tasks. A numerical experiment conducted on four real-world datasets shows that the proposed algorithm can improve classification accuracy by 0.63%–2.85% compared to state-of-the-art ensemble feature selection algorithms. In addition, we conducted case studies on text and image data to demonstrate that the proposed visual analysis system can further improve classification accuracy by 0.28%–5.24%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wuxifan完成签到,获得积分10
刚刚
搜集达人应助清脆亿先采纳,获得10
刚刚
1秒前
杨阳洋完成签到 ,获得积分10
2秒前
傻傻的磬完成签到 ,获得积分10
4秒前
橘颂完成签到,获得积分10
4秒前
5秒前
务实文涛完成签到,获得积分10
5秒前
打打应助科研通管家采纳,获得10
5秒前
张a应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
非雨非晴完成签到,获得积分10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
张a应助科研通管家采纳,获得10
6秒前
monly应助科研通管家采纳,获得10
6秒前
6秒前
张a应助科研通管家采纳,获得10
6秒前
Polling完成签到,获得积分10
6秒前
6秒前
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
6秒前
情怀应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
张a应助科研通管家采纳,获得10
6秒前
monly应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
BowieHuang应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
张a应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
monly应助科研通管家采纳,获得10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728665
求助须知:如何正确求助?哪些是违规求助? 5314143
关于积分的说明 15314925
捐赠科研通 4875842
什么是DOI,文献DOI怎么找? 2618989
邀请新用户注册赠送积分活动 1568649
关于科研通互助平台的介绍 1525191