法拉第效率
电解质
阳极
材料科学
电导率
相间
锂(药物)
电池(电)
扩散
化学工程
无机化学
电化学
化学
电极
热力学
遗传学
工程类
内分泌学
物理化学
功率(物理)
物理
量子力学
生物
医学
作者
Akila C. Thenuwara,Pralav P. Shetty,Neha Kondekar,Stephanie Sandoval,Kelsey A. Cavallaro,Richard May,Chi‐Ta Yang,Lauren E. Marbella,Yue Qi,Matthew T. McDowell
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2020-06-24
卷期号:5 (7): 2411-2420
被引量:199
标识
DOI:10.1021/acsenergylett.0c01209
摘要
Operation of Li-ion batteries below −20 °C is hindered by low electrolyte conductivity and sluggish solid-state diffusion in electrodes. Li metal anodes show promise for low-temperature operation, but few electrolyte compositions exhibit high conductivity at reduced temperature while also allowing Li electrodeposition/stripping with high Coulombic efficiency. Here, we show that the Coulombic efficiency of Li metal anodes can be substantially improved at low temperatures (−60 °C) by tailoring the solid-electrolyte interphase (SEI) structure through the use of two classes of electrolyte solvents: cyclic carbonates and ethers. Cryogenic transmission electron microscopy and other methods show that fluoroethylene carbonate (FEC) induces temperature-dependent changes in the chemistry and structure of the SEI to be abundant with LiF and Li2CO3, while 17O nuclear magnetic resonance and molecular dynamics calculations show that FEC affects the solvation behavior and SEI formation process in this new electrolyte system. Our results demonstrate the promise of rechargeable Li-metal batteries to enable energy storage over a broad temperature range.
科研通智能强力驱动
Strongly Powered by AbleSci AI