已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Clinical-Grade Detection of Microsatellite Instability in Colorectal Tumors by Deep Learning

微卫星不稳定性 MLH1 MSH2 MSH6型 医学 结直肠癌 接收机工作特性 肿瘤科 一致性 内科学 PMS2系统 癌症 DNA错配修复 生物 微卫星 遗传学 基因 等位基因
作者
Amelie Echle,Heike I. Grabsch,Philip Quirke,Piet A. van den Brandt,Nicholas P. West,Gordon Hutchins,Lara R. Heij,Xiuxiang Tan,Susan D. Richman,Jeremias Krause,Elizabeth Alwers,Josien C. A. Jenniskens,Kelly Offermans,Richard Gray,Hermann Brenner,Jenny Chang‐Claude,Christian Trautwein,Alexander T. Pearson,Peter Boor,Tom Luedde,Nadine T. Gaisa,Michael Hoffmeister,Jakob Nikolas Kather
出处
期刊:Gastroenterology [Elsevier BV]
卷期号:159 (4): 1406-1416.e11 被引量:236
标识
DOI:10.1053/j.gastro.2020.06.021
摘要

Background & AimsMicrosatellite instability (MSI) and mismatch-repair deficiency (dMMR) in colorectal tumors are used to select treatment for patients. Deep learning can detect MSI and dMMR in tumor samples on routine histology slides faster and less expensively than molecular assays. However, clinical application of this technology requires high performance and multisite validation, which have not yet been performed.MethodsWe collected H&E-stained slides and findings from molecular analyses for MSI and dMMR from 8836 colorectal tumors (of all stages) included in the MSIDETECT consortium study, from Germany, the Netherlands, the United Kingdom, and the United States. Specimens with dMMR were identified by immunohistochemistry analyses of tissue microarrays for loss of MLH1, MSH2, MSH6, and/or PMS2. Specimens with MSI were identified by genetic analyses. We trained a deep-learning detector to identify samples with MSI from these slides; performance was assessed by cross-validation (N = 6406 specimens) and validated in an external cohort (n = 771 specimens). Prespecified endpoints were area under the receiver operating characteristic (AUROC) curve and area under the precision-recall curve (AUPRC).ResultsThe deep-learning detector identified specimens with dMMR or MSI with a mean AUROC curve of 0.92 (lower bound, 0.91; upper bound, 0.93) and an AUPRC of 0.63 (range, 0.59–0.65), or 67% specificity and 95% sensitivity, in the cross-validation development cohort. In the validation cohort, the classifier identified samples with dMMR with an AUROC of 0.95 (range, 0.92–0.96) without image preprocessing and an AUROC of 0.96 (range, 0.93–0.98) after color normalization.ConclusionsWe developed a deep-learning system that detects colorectal cancer specimens with dMMR or MSI using H&E-stained slides; it detected tissues with dMMR with an AUROC of 0.96 in a large, international validation cohort. This system might be used for high-throughput, low-cost evaluation of colorectal tissue specimens. Microsatellite instability (MSI) and mismatch-repair deficiency (dMMR) in colorectal tumors are used to select treatment for patients. Deep learning can detect MSI and dMMR in tumor samples on routine histology slides faster and less expensively than molecular assays. However, clinical application of this technology requires high performance and multisite validation, which have not yet been performed. We collected H&E-stained slides and findings from molecular analyses for MSI and dMMR from 8836 colorectal tumors (of all stages) included in the MSIDETECT consortium study, from Germany, the Netherlands, the United Kingdom, and the United States. Specimens with dMMR were identified by immunohistochemistry analyses of tissue microarrays for loss of MLH1, MSH2, MSH6, and/or PMS2. Specimens with MSI were identified by genetic analyses. We trained a deep-learning detector to identify samples with MSI from these slides; performance was assessed by cross-validation (N = 6406 specimens) and validated in an external cohort (n = 771 specimens). Prespecified endpoints were area under the receiver operating characteristic (AUROC) curve and area under the precision-recall curve (AUPRC). The deep-learning detector identified specimens with dMMR or MSI with a mean AUROC curve of 0.92 (lower bound, 0.91; upper bound, 0.93) and an AUPRC of 0.63 (range, 0.59–0.65), or 67% specificity and 95% sensitivity, in the cross-validation development cohort. In the validation cohort, the classifier identified samples with dMMR with an AUROC of 0.95 (range, 0.92–0.96) without image preprocessing and an AUROC of 0.96 (range, 0.93–0.98) after color normalization. We developed a deep-learning system that detects colorectal cancer specimens with dMMR or MSI using H&E-stained slides; it detected tissues with dMMR with an AUROC of 0.96 in a large, international validation cohort. This system might be used for high-throughput, low-cost evaluation of colorectal tissue specimens.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
霸天虎发布了新的文献求助30
3秒前
5秒前
超级冰巧关注了科研通微信公众号
6秒前
Cosmosurfer完成签到,获得积分10
7秒前
Lidocaine发布了新的文献求助10
7秒前
tzz发布了新的文献求助10
7秒前
远山发布了新的文献求助10
11秒前
RR发布了新的文献求助10
14秒前
whqpeter完成签到,获得积分10
14秒前
xiaoyuyuyu完成签到 ,获得积分10
14秒前
新定义发布了新的文献求助10
16秒前
乐乐应助燕海雪采纳,获得10
16秒前
kei发布了新的文献求助10
16秒前
zzmyyds完成签到,获得积分10
18秒前
守墓人发布了新的文献求助10
19秒前
kesler驳回了烟花应助
24秒前
何柯完成签到,获得积分10
27秒前
28秒前
芬芬完成签到,获得积分10
28秒前
30秒前
Jackylee完成签到,获得积分10
31秒前
33秒前
贱小贱完成签到,获得积分10
33秒前
龙龙不卷发布了新的文献求助10
34秒前
新定义完成签到,获得积分10
34秒前
雨柏完成签到 ,获得积分10
42秒前
搜集达人应助龙龙不卷采纳,获得10
43秒前
兜兜完成签到 ,获得积分10
43秒前
51秒前
52秒前
52秒前
52秒前
Splaink发布了新的文献求助10
54秒前
56秒前
dsahd2完成签到,获得积分10
1分钟前
1分钟前
1分钟前
燕海雪发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5253415
求助须知:如何正确求助?哪些是违规求助? 4416784
关于积分的说明 13750464
捐赠科研通 4289176
什么是DOI,文献DOI怎么找? 2353280
邀请新用户注册赠送积分活动 1349992
关于科研通互助平台的介绍 1309831