亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Clinical-Grade Detection of Microsatellite Instability in Colorectal Tumors by Deep Learning

微卫星不稳定性 MLH1 MSH2 MSH6型 医学 结直肠癌 接收机工作特性 肿瘤科 一致性 内科学 PMS2系统 癌症 DNA错配修复 生物 微卫星 遗传学 基因 等位基因
作者
Amelie Echle,Heike I. Grabsch,Philip Quirke,Piet A. van den Brandt,Nicholas P. West,Gordon Hutchins,Lara R. Heij,Xiuxiang Tan,Susan D. Richman,Jeremias Krause,Elizabeth Alwers,Josien C. A. Jenniskens,Kelly Offermans,Richard Gray,Hermann Brenner,Jenny Chang‐Claude,Christian Trautwein,Alexander T. Pearson,Peter Boor,Tom Luedde,Nadine T. Gaisa,Michael Hoffmeister,Jakob Nikolas Kather
出处
期刊:Gastroenterology [Elsevier]
卷期号:159 (4): 1406-1416.e11 被引量:236
标识
DOI:10.1053/j.gastro.2020.06.021
摘要

Background & AimsMicrosatellite instability (MSI) and mismatch-repair deficiency (dMMR) in colorectal tumors are used to select treatment for patients. Deep learning can detect MSI and dMMR in tumor samples on routine histology slides faster and less expensively than molecular assays. However, clinical application of this technology requires high performance and multisite validation, which have not yet been performed.MethodsWe collected H&E-stained slides and findings from molecular analyses for MSI and dMMR from 8836 colorectal tumors (of all stages) included in the MSIDETECT consortium study, from Germany, the Netherlands, the United Kingdom, and the United States. Specimens with dMMR were identified by immunohistochemistry analyses of tissue microarrays for loss of MLH1, MSH2, MSH6, and/or PMS2. Specimens with MSI were identified by genetic analyses. We trained a deep-learning detector to identify samples with MSI from these slides; performance was assessed by cross-validation (N = 6406 specimens) and validated in an external cohort (n = 771 specimens). Prespecified endpoints were area under the receiver operating characteristic (AUROC) curve and area under the precision-recall curve (AUPRC).ResultsThe deep-learning detector identified specimens with dMMR or MSI with a mean AUROC curve of 0.92 (lower bound, 0.91; upper bound, 0.93) and an AUPRC of 0.63 (range, 0.59–0.65), or 67% specificity and 95% sensitivity, in the cross-validation development cohort. In the validation cohort, the classifier identified samples with dMMR with an AUROC of 0.95 (range, 0.92–0.96) without image preprocessing and an AUROC of 0.96 (range, 0.93–0.98) after color normalization.ConclusionsWe developed a deep-learning system that detects colorectal cancer specimens with dMMR or MSI using H&E-stained slides; it detected tissues with dMMR with an AUROC of 0.96 in a large, international validation cohort. This system might be used for high-throughput, low-cost evaluation of colorectal tissue specimens. Microsatellite instability (MSI) and mismatch-repair deficiency (dMMR) in colorectal tumors are used to select treatment for patients. Deep learning can detect MSI and dMMR in tumor samples on routine histology slides faster and less expensively than molecular assays. However, clinical application of this technology requires high performance and multisite validation, which have not yet been performed. We collected H&E-stained slides and findings from molecular analyses for MSI and dMMR from 8836 colorectal tumors (of all stages) included in the MSIDETECT consortium study, from Germany, the Netherlands, the United Kingdom, and the United States. Specimens with dMMR were identified by immunohistochemistry analyses of tissue microarrays for loss of MLH1, MSH2, MSH6, and/or PMS2. Specimens with MSI were identified by genetic analyses. We trained a deep-learning detector to identify samples with MSI from these slides; performance was assessed by cross-validation (N = 6406 specimens) and validated in an external cohort (n = 771 specimens). Prespecified endpoints were area under the receiver operating characteristic (AUROC) curve and area under the precision-recall curve (AUPRC). The deep-learning detector identified specimens with dMMR or MSI with a mean AUROC curve of 0.92 (lower bound, 0.91; upper bound, 0.93) and an AUPRC of 0.63 (range, 0.59–0.65), or 67% specificity and 95% sensitivity, in the cross-validation development cohort. In the validation cohort, the classifier identified samples with dMMR with an AUROC of 0.95 (range, 0.92–0.96) without image preprocessing and an AUROC of 0.96 (range, 0.93–0.98) after color normalization. We developed a deep-learning system that detects colorectal cancer specimens with dMMR or MSI using H&E-stained slides; it detected tissues with dMMR with an AUROC of 0.96 in a large, international validation cohort. This system might be used for high-throughput, low-cost evaluation of colorectal tissue specimens.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
Mayer1234088发布了新的文献求助10
11秒前
53秒前
krajicek发布了新的文献求助30
59秒前
1分钟前
liufinity发布了新的文献求助10
1分钟前
柿饼完成签到,获得积分10
1分钟前
英俊的铭应助liufinity采纳,获得10
1分钟前
1分钟前
krajicek发布了新的文献求助10
1分钟前
大个应助科研通管家采纳,获得10
2分钟前
小马甲应助科研通管家采纳,获得30
2分钟前
雪糕考研完成签到 ,获得积分10
2分钟前
2分钟前
liufinity发布了新的文献求助10
2分钟前
沧海云完成签到 ,获得积分10
2分钟前
Akim应助EmmaZ采纳,获得10
4分钟前
Frank应助地尔硫卓采纳,获得50
4分钟前
4分钟前
EmmaZ发布了新的文献求助10
4分钟前
EmmaZ完成签到,获得积分10
4分钟前
派大星完成签到 ,获得积分10
5分钟前
gwbk完成签到,获得积分10
6分钟前
6分钟前
YUYUYU发布了新的文献求助10
6分钟前
cy0824完成签到 ,获得积分10
6分钟前
务实的罡完成签到,获得积分10
7分钟前
学习吧完成签到 ,获得积分10
7分钟前
席江海完成签到,获得积分10
7分钟前
我是老大应助科研通管家采纳,获得10
8分钟前
SciGPT应助Wei采纳,获得10
8分钟前
HAG发布了新的文献求助10
8分钟前
乐乐乐乐乐乐应助大喜子采纳,获得10
8分钟前
赘婿应助Wei采纳,获得10
9分钟前
朴实芷云完成签到,获得积分20
9分钟前
大喜子给大喜子的求助进行了留言
9分钟前
打打应助朴实芷云采纳,获得50
9分钟前
领导范儿应助HAG采纳,获得10
9分钟前
9分钟前
HAG发布了新的文献求助10
10分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154982
求助须知:如何正确求助?哪些是违规求助? 2805698
关于积分的说明 7865848
捐赠科研通 2463938
什么是DOI,文献DOI怎么找? 1311678
科研通“疑难数据库(出版商)”最低求助积分说明 629728
版权声明 601853