亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Clinical-Grade Detection of Microsatellite Instability in Colorectal Tumors by Deep Learning

微卫星不稳定性 MLH1 MSH2 MSH6型 医学 结直肠癌 接收机工作特性 肿瘤科 一致性 内科学 PMS2系统 癌症 DNA错配修复 生物 微卫星 遗传学 基因 等位基因
作者
Amelie Echle,Heike I. Grabsch,Philip Quirke,Piet A. van den Brandt,Nicholas P. West,Gordon Hutchins,Lara R. Heij,Xiuxiang Tan,Susan D. Richman,Jeremias Krause,Elizabeth Alwers,Josien C. A. Jenniskens,Kelly Offermans,Richard Gray,Hermann Brenner,Jenny Chang‐Claude,Christian Trautwein,Alexander T. Pearson,Peter Boor,Tom Luedde,Nadine T. Gaisa,Michael Hoffmeister,Jakob Nikolas Kather
出处
期刊:Gastroenterology [Elsevier BV]
卷期号:159 (4): 1406-1416.e11 被引量:236
标识
DOI:10.1053/j.gastro.2020.06.021
摘要

Background & AimsMicrosatellite instability (MSI) and mismatch-repair deficiency (dMMR) in colorectal tumors are used to select treatment for patients. Deep learning can detect MSI and dMMR in tumor samples on routine histology slides faster and less expensively than molecular assays. However, clinical application of this technology requires high performance and multisite validation, which have not yet been performed.MethodsWe collected H&E-stained slides and findings from molecular analyses for MSI and dMMR from 8836 colorectal tumors (of all stages) included in the MSIDETECT consortium study, from Germany, the Netherlands, the United Kingdom, and the United States. Specimens with dMMR were identified by immunohistochemistry analyses of tissue microarrays for loss of MLH1, MSH2, MSH6, and/or PMS2. Specimens with MSI were identified by genetic analyses. We trained a deep-learning detector to identify samples with MSI from these slides; performance was assessed by cross-validation (N = 6406 specimens) and validated in an external cohort (n = 771 specimens). Prespecified endpoints were area under the receiver operating characteristic (AUROC) curve and area under the precision-recall curve (AUPRC).ResultsThe deep-learning detector identified specimens with dMMR or MSI with a mean AUROC curve of 0.92 (lower bound, 0.91; upper bound, 0.93) and an AUPRC of 0.63 (range, 0.59–0.65), or 67% specificity and 95% sensitivity, in the cross-validation development cohort. In the validation cohort, the classifier identified samples with dMMR with an AUROC of 0.95 (range, 0.92–0.96) without image preprocessing and an AUROC of 0.96 (range, 0.93–0.98) after color normalization.ConclusionsWe developed a deep-learning system that detects colorectal cancer specimens with dMMR or MSI using H&E-stained slides; it detected tissues with dMMR with an AUROC of 0.96 in a large, international validation cohort. This system might be used for high-throughput, low-cost evaluation of colorectal tissue specimens. Microsatellite instability (MSI) and mismatch-repair deficiency (dMMR) in colorectal tumors are used to select treatment for patients. Deep learning can detect MSI and dMMR in tumor samples on routine histology slides faster and less expensively than molecular assays. However, clinical application of this technology requires high performance and multisite validation, which have not yet been performed. We collected H&E-stained slides and findings from molecular analyses for MSI and dMMR from 8836 colorectal tumors (of all stages) included in the MSIDETECT consortium study, from Germany, the Netherlands, the United Kingdom, and the United States. Specimens with dMMR were identified by immunohistochemistry analyses of tissue microarrays for loss of MLH1, MSH2, MSH6, and/or PMS2. Specimens with MSI were identified by genetic analyses. We trained a deep-learning detector to identify samples with MSI from these slides; performance was assessed by cross-validation (N = 6406 specimens) and validated in an external cohort (n = 771 specimens). Prespecified endpoints were area under the receiver operating characteristic (AUROC) curve and area under the precision-recall curve (AUPRC). The deep-learning detector identified specimens with dMMR or MSI with a mean AUROC curve of 0.92 (lower bound, 0.91; upper bound, 0.93) and an AUPRC of 0.63 (range, 0.59–0.65), or 67% specificity and 95% sensitivity, in the cross-validation development cohort. In the validation cohort, the classifier identified samples with dMMR with an AUROC of 0.95 (range, 0.92–0.96) without image preprocessing and an AUROC of 0.96 (range, 0.93–0.98) after color normalization. We developed a deep-learning system that detects colorectal cancer specimens with dMMR or MSI using H&E-stained slides; it detected tissues with dMMR with an AUROC of 0.96 in a large, international validation cohort. This system might be used for high-throughput, low-cost evaluation of colorectal tissue specimens.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天黑不打烊完成签到,获得积分10
6秒前
李健应助早起先喝一碗粥采纳,获得10
19秒前
猕猴桃猴完成签到,获得积分10
21秒前
情怀应助袁咏琳冲冲冲采纳,获得10
37秒前
eye发布了新的文献求助10
38秒前
香风智乃完成签到 ,获得积分10
43秒前
45秒前
45秒前
Mtx3098520564完成签到 ,获得积分10
45秒前
47秒前
50秒前
52秒前
深情安青应助迷人问兰采纳,获得30
52秒前
万能图书馆应助eye采纳,获得10
53秒前
yangyajie发布了新的文献求助10
53秒前
jjj完成签到 ,获得积分10
55秒前
Kaite完成签到,获得积分10
1分钟前
美满的高丽完成签到 ,获得积分10
1分钟前
郭燥发布了新的文献求助10
1分钟前
1分钟前
Brain完成签到 ,获得积分10
1分钟前
Vaseegara完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
北觅完成签到 ,获得积分10
2分钟前
哈哈哈完成签到,获得积分10
2分钟前
2分钟前
学术智子完成签到,获得积分10
2分钟前
迷人问兰完成签到,获得积分10
2分钟前
迷人问兰发布了新的文献求助30
2分钟前
2分钟前
阿丕啊呸完成签到,获得积分10
2分钟前
罗舒发布了新的文献求助10
2分钟前
Lion完成签到,获得积分10
2分钟前
2分钟前
2分钟前
罗舒完成签到,获得积分10
2分钟前
PAD发布了新的文献求助10
2分钟前
正宗完成签到,获得积分10
2分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965582
求助须知:如何正确求助?哪些是违规求助? 3510843
关于积分的说明 11155405
捐赠科研通 3245330
什么是DOI,文献DOI怎么找? 1792840
邀请新用户注册赠送积分活动 874110
科研通“疑难数据库(出版商)”最低求助积分说明 804176