Nanoparticle Charge and Size Control Foliar Delivery Efficiency to Plant Cells and Organelles

纳米颗粒 细胞器 电荷(物理) 材料科学 纳米技术 生物物理学 细胞生物学 物理 生物 量子力学
作者
Peiguang Hu,Jing An,Maquela M. Faulkner,Honghong Wu,Zhaohu Li,Xiaoli Tian,Juan Pablo Giraldo
出处
期刊:ACS Nano [American Chemical Society]
卷期号:14 (7): 7970-7986 被引量:353
标识
DOI:10.1021/acsnano.9b09178
摘要

Fundamental and quantitative understanding of the interactions between nanoparticles and plant leaves is crucial for advancing the field of nanoenabled agriculture. Herein, we systematically investigated and modeled how ζ potential (−52.3 mV to +36.6 mV) and hydrodynamic size (1.7–18 nm) of hydrophilic nanoparticles influence delivery efficiency and pathways to specific leaf cells and organelles. We studied interactions of nanoparticles of agricultural interest including carbon dots (CDs, 0.5 and 5 mg/mL), cerium oxide (CeO2, 0.5 mg/mL), and silica (SiO2, 0.5 mg/mL) nanoparticles with leaves of two major crop species having contrasting leaf anatomies: cotton (dicotyledon) and maize (monocotyledon). Biocompatible CDs allowed real-time tracking of nanoparticle translocation and distribution in planta by confocal fluorescence microscopy at high spatial (∼200 nm) and temporal (2–5 min) resolution. Nanoparticle formulations with surfactants (Silwet L-77) that reduced surface tension to 22 mN/m were found to be crucial for enabling rapid uptake (<10 min) of nanoparticles through the leaf stomata and cuticle pathways. Nanoparticle–leaf interaction (NLI) empirical models based on hydrodynamic size and ζ potential indicate that hydrophilic nanoparticles with <20 and 11 nm for cotton and maize, respectively, and positive charge (>15 mV), exhibit the highest foliar delivery efficiencies into guard cells (100%), extracellular space (90.3%), and chloroplasts (55.8%). Systematic assessments of nanoparticle–plant interactions would lead to the development of NLI models that predict the translocation and distribution of nanomaterials in plants based on their chemical and physical properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苹果小蜜蜂完成签到,获得积分10
1秒前
227完成签到,获得积分10
1秒前
1秒前
CodeCraft应助Chany采纳,获得10
1秒前
1秒前
2秒前
Asteroid驳回了Owen应助
2秒前
yuminger完成签到 ,获得积分10
2秒前
qks完成签到 ,获得积分0
2秒前
mlk完成签到,获得积分10
2秒前
xiaoX12138发布了新的文献求助10
3秒前
fangyuan发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
sherry221发布了新的文献求助20
4秒前
123123发布了新的文献求助10
4秒前
浮游应助小王小王采纳,获得10
5秒前
5秒前
洋洋洋完成签到,获得积分10
5秒前
1111rrrrr发布了新的文献求助30
5秒前
刘晴晴完成签到,获得积分10
5秒前
zeal发布了新的文献求助10
5秒前
6秒前
DduYy完成签到,获得积分10
6秒前
哇咔咔完成签到,获得积分10
6秒前
冲浪男孩完成签到,获得积分10
7秒前
evergarden发布了新的文献求助20
7秒前
7秒前
小匹夫完成签到,获得积分10
7秒前
CipherSage应助Yvette采纳,获得10
7秒前
7秒前
8秒前
8秒前
木子完成签到,获得积分20
9秒前
威武的成风完成签到,获得积分10
10秒前
清爽的含灵完成签到,获得积分10
10秒前
失心落情发布了新的文献求助10
10秒前
上官完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5270489
求助须知:如何正确求助?哪些是违规求助? 4428597
关于积分的说明 13785284
捐赠科研通 4306524
什么是DOI,文献DOI怎么找? 2363095
邀请新用户注册赠送积分活动 1358819
关于科研通互助平台的介绍 1321696