DeepCropMapping: A multi-temporal deep learning approach with improved spatial generalizability for dynamic corn and soybean mapping

卷积神经网络 人工智能 机器学习 学习迁移 模式识别(心理学) 精准农业
作者
Jinfan Xu,Yue Zhu,Renhai Zhong,Lin Zhixian,Jialu Xu,Hao Jiang,Jingfeng Huang,Haifeng Li,Tao Lin
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:247: 111946- 被引量:24
标识
DOI:10.1016/j.rse.2020.111946
摘要

Abstract Accurate crop mapping provides important and timely information for decision support on the estimation of crop production at large scale. Most existing crop-specific cover products based on remote sensing data and machine learning algorithms cannot serve large agriculture production areas as a result of poor model transfer capabilities. Developing a generalizable crop classification model for spatial transfer across regions is greatly needed. A deep learning approach, named DeepCropMapping (DCM), has been developed based on long short-term memory structure with attention mechanisms through integrating multi-temporal and multi-spectral remote sensing data for large-scale dynamic corn and soybean mapping. Full cross validation of classification experiments were conducted in six sites each covering 2,890,000 pixels at 30 m resolution in the U.S. corn belt from Year 2015 to 2018. Landsat Analysis Ready Data (ARD) and Cropland Data Layer (CDL) were adopted as the input satellite observations and ground reference, respectively. Transformer, Random Forest (RF), and Multilayer Perceptron (MLP) models were built for comparison. The DCM model produced a mean kappa score of 85.8% in base sites and a mean average kappa score of 82.0% in transfer sites at the end of the growing season. It yielded a comparable performance to Transformer and better than RF and MLP at the local test. The DCM model significantly outperformed other three models with a 95% confidence interval in the spatial transfer analysis. The results demonstrated the capability of learning generalizable features by the DCM model from ARD time series. The computational complexity analysis suggested that the DCM model required a shorter training time than Transformer but longer than MLP and RF. The results of the in-season classification experiment indicated the DCM model captured critical information from key growth phases and achieved higher accuracy than other models after the beginning of July. By monitoring the classification confidence in each time step, the results showed that the increased length of seasonal remote sensing time series would reduce the classification uncertainty in all sites. This study provided a viable option toward large-scale dynamic crop mapping through the integration of deep learning and remote sensing time series.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快乐一江发布了新的文献求助10
刚刚
邱型程应助屿落采纳,获得20
1秒前
鹤鸣完成签到,获得积分10
4秒前
4秒前
4秒前
6秒前
天真的高山完成签到,获得积分10
7秒前
善良海云完成签到,获得积分10
9秒前
ANG发布了新的文献求助10
9秒前
从容梦旋完成签到,获得积分10
11秒前
12秒前
酷波er应助liuyunhao7207采纳,获得10
12秒前
人生如梦应助健忘跳跳糖采纳,获得10
13秒前
13秒前
sihanzhiyu发布了新的文献求助10
13秒前
汉堡包应助dpp采纳,获得10
13秒前
在水一方应助hnu301采纳,获得10
13秒前
jbhb完成签到,获得积分20
14秒前
Colossus完成签到,获得积分10
14秒前
14秒前
16秒前
王哒哒完成签到,获得积分10
16秒前
英姑应助Fury采纳,获得10
18秒前
善良冷松发布了新的文献求助10
18秒前
二十五完成签到,获得积分10
19秒前
王哒哒发布了新的文献求助10
20秒前
20秒前
22秒前
23秒前
26秒前
26秒前
上官若男应助善良冷松采纳,获得10
27秒前
cccyq发布了新的文献求助10
27秒前
李健应助叶叶采纳,获得30
28秒前
29秒前
高木发布了新的文献求助10
30秒前
30秒前
Fury发布了新的文献求助10
31秒前
31秒前
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989406
求助须知:如何正确求助?哪些是违规求助? 3531522
关于积分的说明 11254187
捐赠科研通 3270174
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174