DeepCropMapping: A multi-temporal deep learning approach with improved spatial generalizability for dynamic corn and soybean mapping

卷积神经网络 人工智能 机器学习 学习迁移 模式识别(心理学) 精准农业
作者
Jinfan Xu,Yue Zhu,Renhai Zhong,Lin Zhixian,Jialu Xu,Hao Jiang,Jingfeng Huang,Haifeng Li,Tao Lin
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:247: 111946- 被引量:24
标识
DOI:10.1016/j.rse.2020.111946
摘要

Abstract Accurate crop mapping provides important and timely information for decision support on the estimation of crop production at large scale. Most existing crop-specific cover products based on remote sensing data and machine learning algorithms cannot serve large agriculture production areas as a result of poor model transfer capabilities. Developing a generalizable crop classification model for spatial transfer across regions is greatly needed. A deep learning approach, named DeepCropMapping (DCM), has been developed based on long short-term memory structure with attention mechanisms through integrating multi-temporal and multi-spectral remote sensing data for large-scale dynamic corn and soybean mapping. Full cross validation of classification experiments were conducted in six sites each covering 2,890,000 pixels at 30 m resolution in the U.S. corn belt from Year 2015 to 2018. Landsat Analysis Ready Data (ARD) and Cropland Data Layer (CDL) were adopted as the input satellite observations and ground reference, respectively. Transformer, Random Forest (RF), and Multilayer Perceptron (MLP) models were built for comparison. The DCM model produced a mean kappa score of 85.8% in base sites and a mean average kappa score of 82.0% in transfer sites at the end of the growing season. It yielded a comparable performance to Transformer and better than RF and MLP at the local test. The DCM model significantly outperformed other three models with a 95% confidence interval in the spatial transfer analysis. The results demonstrated the capability of learning generalizable features by the DCM model from ARD time series. The computational complexity analysis suggested that the DCM model required a shorter training time than Transformer but longer than MLP and RF. The results of the in-season classification experiment indicated the DCM model captured critical information from key growth phases and achieved higher accuracy than other models after the beginning of July. By monitoring the classification confidence in each time step, the results showed that the increased length of seasonal remote sensing time series would reduce the classification uncertainty in all sites. This study provided a viable option toward large-scale dynamic crop mapping through the integration of deep learning and remote sensing time series.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老肥发布了新的文献求助30
刚刚
刚刚
小小鱼完成签到 ,获得积分10
1秒前
想念发布了新的文献求助10
1秒前
1秒前
guoke完成签到,获得积分0
2秒前
杰杰小杰发布了新的文献求助60
2秒前
小十二完成签到,获得积分10
2秒前
2秒前
科研通AI5应助慧慧采纳,获得10
2秒前
冷酷跳跳糖完成签到,获得积分10
3秒前
ZYao65发布了新的文献求助10
3秒前
3秒前
田様应助muyingleng采纳,获得10
3秒前
phyllis完成签到,获得积分10
4秒前
4秒前
火星上的菲鹰应助阿九采纳,获得10
4秒前
1908679476发布了新的文献求助10
5秒前
5秒前
5秒前
李健的小迷弟应助HU采纳,获得10
6秒前
Nana发布了新的文献求助10
6秒前
8秒前
8秒前
风为裳完成签到,获得积分10
8秒前
跳跃凡桃发布了新的文献求助10
8秒前
Gloyxtg发布了新的文献求助10
8秒前
9秒前
9秒前
Mlwwq发布了新的文献求助10
9秒前
小张医生发布了新的文献求助10
9秒前
10秒前
科研通AI5应助甜甜采纳,获得10
10秒前
12秒前
忍冬完成签到,获得积分10
13秒前
tigger发布了新的文献求助10
13秒前
小杨完成签到,获得积分10
13秒前
大雷完成签到,获得积分10
13秒前
15秒前
上岸的咸鱼完成签到,获得积分20
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564154
求助须知:如何正确求助?哪些是违规求助? 3137367
关于积分的说明 9422052
捐赠科研通 2837751
什么是DOI,文献DOI怎么找? 1560082
邀请新用户注册赠送积分活动 729261
科研通“疑难数据库(出版商)”最低求助积分说明 717280