cGMP依赖性蛋白激酶
环磷酸鸟苷
磷酸二酯酶
蛋白激酶A
信号转导
环磷酸腺苷
cGMP特异性磷酸二酯酶5型
磷酸二酯酶3
合成代谢
内科学
内分泌学
骨质疏松症
一氧化氮
西地那非
生物
医学
激酶
细胞生物学
受体
生物化学
丝裂原活化蛋白激酶激酶
酶
作者
Se‐Min Kim,Tony Yuen,Jameel Iqbal,Mishaela R. Rubin,Mone Zaidi
摘要
Abstract The nitric oxide (NO)–cyclic guanosine monophosphate (cGMP)–protein kinase G (PKG) pathway plays a critical role in skeletal homeostasis. Preclinical data using NO and its donors and genetically modified mice demonstrated that NO was required in bone remodeling and partly mediated the anabolic effects of mechanical stimuli and estrogen. However, the off‐target effects and tachyphylaxis of NO limit its long‐term use, and previous clinical trials using organic nitrates for osteoporosis have been disappointing. Among the other components in the downstream pathway, targeting cGMP‐specific phosphodiesterase to promote the NO–cGMP–PKG signal is a viable option. There are growing in vitro and in vivo data that, among many other PDE families, PDE5A is highly expressed in skeletal tissue, and inhibiting PDE5A using currently available PDE5A inhibitors might increase the osteoanabolic signal and protect the skeleton. These preclinical data open the possibility of repurposing PDE5A inhibitors for treating osteoporosis. Further research is needed to address the primary target bone cell of PDE5A inhibition, the contribution of direct and indirect effects of PDE5A inhibition, and the pathophysiological changes in skeletal PDE5A expression in aging and hypogonadal animal models.
科研通智能强力驱动
Strongly Powered by AbleSci AI