材料科学
阴极
电解质
锂(药物)
单独一对
图层(电子)
化学工程
纳米技术
电极
物理化学
分子
有机化学
化学
医学
工程类
内分泌学
作者
Xuerui Yang,Min Lin,Guorui Zheng,Jue Wu,Xianshu Wang,Fucheng Ren,Wenguang Zhang,Ying‐Chih Liao,Weimin Zhao,Zhongru Zhang,Ningbo Xu,Wanli Yang,Yong Yang
标识
DOI:10.1002/adfm.202004664
摘要
Abstract Structural and interfacial instability of the LiCoO 2 cathode under a voltage exceeding 4.5 V (vs Li/Li + ) severely hinders its practical applications for high‐energy‐density lithium batteries. Herein, a modified electrolyte with nitriles (suberonitrile or 1,3,6‐hexanetricarbonitrile) and fluoroethylene carbonate (FEC) coadditives is demonstrated to form an ultrathin and uniform interface layer on LiCoO 2 cathode under a synergetic effect. As such, LiCoO 2 /Li cells display excellent cyclability at a cutoff voltage of 4.6 V with a capacity retention over 72% after 300 cycles and 60% after 200 cycles at 30 and 55 °C, respectively, even achieving operation at a high current rate (10 C) upon 500 cycles as compared to the controls with fast‐falling capacity to zero. Furthermore, an adsorption‐coordination mechanism between nitriles and cobalt and synergetic effect of coadditives are explored by the alliance of spectroscopic analysis and theoretical calculations. The contributed lone‐pairs on the N 2p orbital of nitriles in coordination lowers the real oxidation state of Co 3+/4+ so that it decreases its catalysis on electrolytes, and the synergy from nitrile‐derived species regulates FEC to form an LiF‐containing electron‐insulated interface layer. This work shares a new insight to nitriles with the synergy of coadditives and paves a way to refine (ultra)high‐voltage LiCoO 2 cathode for high‐energy‐density energy storages.
科研通智能强力驱动
Strongly Powered by AbleSci AI