Constrained EV Charging Scheduling Based on Safe Deep Reinforcement Learning

强化学习 马尔可夫决策过程 随机性 计算机科学 调度(生产过程) 电动汽车 经济调度 数学优化 马尔可夫过程 人工智能 工程类 功率(物理) 电力系统 电气工程 数学 统计 物理 量子力学
作者
Hepeng Li,Zhiqiang Wan,Haibo He
出处
期刊:IEEE Transactions on Smart Grid [Institute of Electrical and Electronics Engineers]
卷期号:11 (3): 2427-2439 被引量:307
标识
DOI:10.1109/tsg.2019.2955437
摘要

Electric vehicles (EVs) have been popularly adopted and deployed over the past few years because they are environment-friendly. When integrated into smart grids, EVs can operate as flexible loads or energy storage devices to participate in demand response (DR). By taking advantage of time-varying electricity prices in DR, the charging cost can be reduced by optimizing the charging/discharging schedules. However, since there exists randomness in the arrival and departure time of an EV and the electricity price, it is difficult to determine the optimal charging/discharging schedules to guarantee that the EV is fully charged upon departure. To address this issue, we formulate the EV charging/discharging scheduling problem as a constrained Markov Decision Process (CMDP). The aim is to find a constrained charging/discharging scheduling strategy to minimize the charging cost as well as guarantee the EV can be fully charged. To solve the CMDP, a model-free approach based on safe deep reinforcement learning (SDRL) is proposed. The proposed approach does not require any domain knowledge about the randomness. It directly learns to generate the constrained optimal charging/discharging schedules with a deep neural network (DNN). Unlike existing reinforcement learning (RL) or deep RL (DRL) paradigms, the proposed approach does not need to manually design a penalty term or tune a penalty coefficient. Numerical experiments with real-world electricity prices demonstrate the effectiveness of the proposed approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Echo1完成签到,获得积分20
刚刚
雨淋沐风完成签到,获得积分10
1秒前
完美世界应助郭峰采纳,获得10
1秒前
开心的飞扬应助hh采纳,获得20
1秒前
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
酷酷巧蟹完成签到,获得积分10
2秒前
2秒前
大个应助wang采纳,获得10
3秒前
WATQ完成签到,获得积分10
3秒前
泠泠月上完成签到,获得积分10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
weiling完成签到,获得积分10
3秒前
3秒前
子车茗应助科研通管家采纳,获得20
3秒前
3秒前
循环发布了新的文献求助10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
Xcj发布了新的文献求助10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
子车茗应助科研通管家采纳,获得20
4秒前
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
吨吨发布了新的文献求助10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
zzz发布了新的文献求助30
4秒前
慕青应助科研通管家采纳,获得10
4秒前
LewisAcid应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728317
求助须知:如何正确求助?哪些是违规求助? 5312368
关于积分的说明 15313794
捐赠科研通 4875546
什么是DOI,文献DOI怎么找? 2618882
邀请新用户注册赠送积分活动 1568431
关于科研通互助平台的介绍 1525095