过电位
化学
锌
锡
电解质
法拉第效率
沉积(地质)
铟
电极
极化(电化学)
电镀
化学工程
无机化学
冶金
电化学
图层(电子)
材料科学
有机化学
古生物学
物理化学
工程类
生物
沉积物
作者
Tomohiro Otani,Takeshi Okuma,Takayuki Homma
标识
DOI:10.1016/j.jelechem.2020.114583
摘要
The effects of In and Sn additives on the charging behavior of Zn negative electrodes for Zn-Ni flow-assisted batteries were investigated. The addition of InCl3・4H2O or K2SnO3・3H2O to the electrolyte suppressed the formation of mossy shaped Zn, which was highly filamentous electrodeposit and a typical cause of a battery failure. In was effective even at concentrations as low as 1.0 mmol dm−3, while more than 25 mmol dm−3 was required for the case of Sn. The results of ICP-AES measurements indicated that the difference was explained by higher reduced amount of In than that of Sn during the charging process. The In additive did not show any negative effects on the Coulombic and voltaic efficiencies, which was in accordance with the polarization behavior of Zn in the In containing solution; electrodeposited In had high overpotential for hydrogen evolution and minor influences on the Zn deposition potential. From SEM observation at the early stages of electrodeposition, the compact Zn deposits were formed by mitigating the localized deposition on layer-like Zn structures. As a mechanism behind such a uniform deposition by In, a compositional analysis in depth showed deposited In was accumulated at the surface of the deposits.
科研通智能强力驱动
Strongly Powered by AbleSci AI