Effective adjoint approaches for computational fluid dynamics

雅可比矩阵与行列式 自动微分 计算机科学 数学优化 伴随方程 加速 可扩展性 并行计算 航程(航空) 应用数学 偏微分方程 计算科学 数学 理论计算机科学 算法 计算 数学分析 材料科学 复合材料 数据库
作者
Gaetan K. Kenway,Charles A. Mader,Ping He,Joaquim R. R. A. Martins
出处
期刊:Progress in Aerospace Sciences [Elsevier]
卷期号:110: 100542-100542 被引量:172
标识
DOI:10.1016/j.paerosci.2019.05.002
摘要

The adjoint method is used for high-fidelity aerodynamic shape optimization and is an efficient approach for computing the derivatives of a function of interest with respect to a large number of design variables. Over the past few decades, various approaches have been used to implement the adjoint method in computational fluid dynamics solvers. However, further advances in the field are hindered by the lack of performance assessments that compare the various adjoint implementations. Therefore, we propose open benchmarks and report a comprehensive evaluation of the various approaches to adjoint implementation. We also make recommendations on effective approaches, that is, approaches that are efficient, accurate, and have a low implementation cost. We focus on the discrete adjoint method and describe adjoint implementations for two computational fluid dynamics solvers by using various methods for computing the partial derivatives in the adjoint equations and for solving those equations. Both source code transformation and operator-overloading algorithmic differentiation tools are used to compute the partial derivatives, along with finite differencing. We also examine the use of explicit Jacobian and Jacobian-free solution methods. We quantitatively evaluate the speed, scalability, memory usage, and accuracy of the various implementations by running cases that cover a wide range of Mach numbers, Reynolds numbers, mesh topologies, mesh sizes, and number of CPU cores. We conclude that the Jacobian-free method using source code transformation algorithmic differentiation to compute the partial derivatives is the best option because it computes exact derivatives with the lowest CPU time and the lowest memory requirements, and it also scales well up to 10 million cells and over one thousand CPU cores. The superior performance of this approach is primarily due to its Jacobian-free adjoint strategy. The cases presented herein are publicly available and represent platform-independent benchmarks for comparing other current and future adjoint implementations. Our results and discussion provide a guide for discrete adjoint implementations, not only for computational fluid dynamics but also for a wide range of other partial differential equation solvers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
畅快的念烟完成签到,获得积分10
7秒前
qwe完成签到,获得积分10
8秒前
喵咪西西完成签到 ,获得积分10
10秒前
风清扬应助科研通管家采纳,获得10
16秒前
风清扬应助科研通管家采纳,获得10
16秒前
FashionBoy应助科研通管家采纳,获得10
16秒前
风清扬应助科研通管家采纳,获得10
16秒前
慕青应助科研通管家采纳,获得10
16秒前
shhoing应助科研通管家采纳,获得10
16秒前
绿袖子完成签到,获得积分10
18秒前
郑成灿完成签到 ,获得积分10
18秒前
榴芒兔完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
22秒前
1233完成签到 ,获得积分10
22秒前
王翔飞完成签到 ,获得积分10
23秒前
cellur发布了新的文献求助10
25秒前
三脸茫然完成签到 ,获得积分0
25秒前
25秒前
坚定如南完成签到 ,获得积分10
25秒前
马铃薯完成签到 ,获得积分10
33秒前
清秀豆芽完成签到,获得积分10
33秒前
曹国庆完成签到 ,获得积分10
34秒前
愉快的丹彤完成签到 ,获得积分10
36秒前
39秒前
追梦发布了新的文献求助10
43秒前
HaojunWang完成签到 ,获得积分10
45秒前
45秒前
Diego完成签到,获得积分10
48秒前
yusovegoistt发布了新的文献求助10
50秒前
昏睡的静丹完成签到,获得积分10
51秒前
热情嘉懿完成签到,获得积分20
51秒前
54秒前
加油完成签到,获得积分10
54秒前
121卡卡完成签到 ,获得积分10
55秒前
手握灵珠常奋笔完成签到,获得积分10
55秒前
yshj完成签到 ,获得积分0
57秒前
量子星尘发布了新的文献求助10
57秒前
快乐的鱼完成签到,获得积分10
58秒前
ADcal完成签到 ,获得积分10
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539188
求助须知:如何正确求助?哪些是违规求助? 4625972
关于积分的说明 14597205
捐赠科研通 4566798
什么是DOI,文献DOI怎么找? 2503620
邀请新用户注册赠送积分活动 1481554
关于科研通互助平台的介绍 1453069