Effective adjoint approaches for computational fluid dynamics

雅可比矩阵与行列式 自动微分 计算机科学 数学优化 伴随方程 加速 可扩展性 并行计算 航程(航空) 应用数学 偏微分方程 计算科学 数学 理论计算机科学 算法 计算 数学分析 复合材料 数据库 材料科学
作者
Gaetan K. Kenway,Charles A. Mader,Ping He,Joaquim R. R. A. Martins
出处
期刊:Progress in Aerospace Sciences [Elsevier]
卷期号:110: 100542-100542 被引量:172
标识
DOI:10.1016/j.paerosci.2019.05.002
摘要

The adjoint method is used for high-fidelity aerodynamic shape optimization and is an efficient approach for computing the derivatives of a function of interest with respect to a large number of design variables. Over the past few decades, various approaches have been used to implement the adjoint method in computational fluid dynamics solvers. However, further advances in the field are hindered by the lack of performance assessments that compare the various adjoint implementations. Therefore, we propose open benchmarks and report a comprehensive evaluation of the various approaches to adjoint implementation. We also make recommendations on effective approaches, that is, approaches that are efficient, accurate, and have a low implementation cost. We focus on the discrete adjoint method and describe adjoint implementations for two computational fluid dynamics solvers by using various methods for computing the partial derivatives in the adjoint equations and for solving those equations. Both source code transformation and operator-overloading algorithmic differentiation tools are used to compute the partial derivatives, along with finite differencing. We also examine the use of explicit Jacobian and Jacobian-free solution methods. We quantitatively evaluate the speed, scalability, memory usage, and accuracy of the various implementations by running cases that cover a wide range of Mach numbers, Reynolds numbers, mesh topologies, mesh sizes, and number of CPU cores. We conclude that the Jacobian-free method using source code transformation algorithmic differentiation to compute the partial derivatives is the best option because it computes exact derivatives with the lowest CPU time and the lowest memory requirements, and it also scales well up to 10 million cells and over one thousand CPU cores. The superior performance of this approach is primarily due to its Jacobian-free adjoint strategy. The cases presented herein are publicly available and represent platform-independent benchmarks for comparing other current and future adjoint implementations. Our results and discussion provide a guide for discrete adjoint implementations, not only for computational fluid dynamics but also for a wide range of other partial differential equation solvers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
claud完成签到 ,获得积分10
2秒前
SHD完成签到 ,获得积分10
2秒前
3秒前
顾矜应助蛰伏的小宇宙采纳,获得10
4秒前
莫道桑榆完成签到,获得积分10
5秒前
tong发布了新的文献求助10
6秒前
7秒前
aguo完成签到 ,获得积分10
8秒前
时光完成签到,获得积分10
9秒前
652183758完成签到 ,获得积分10
10秒前
挪威的森林完成签到 ,获得积分10
11秒前
唠叨的傲薇完成签到,获得积分10
11秒前
12秒前
14秒前
Ldq发布了新的文献求助10
18秒前
一一应助科研通管家采纳,获得20
18秒前
CipherSage应助科研通管家采纳,获得10
18秒前
奋斗天德发布了新的文献求助10
18秒前
李爱国应助科研通管家采纳,获得10
18秒前
SSSAPO应助科研通管家采纳,获得10
18秒前
绵绵球应助科研通管家采纳,获得20
18秒前
一一应助科研通管家采纳,获得20
18秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
wanci应助科研通管家采纳,获得10
18秒前
19秒前
一一应助科研通管家采纳,获得20
19秒前
在水一方应助科研通管家采纳,获得10
19秒前
22秒前
24秒前
Adeline发布了新的文献求助30
26秒前
26秒前
strings完成签到,获得积分10
27秒前
秀丽的初柔完成签到,获得积分10
29秒前
xzc完成签到,获得积分10
29秒前
strings发布了新的文献求助10
31秒前
31秒前
蛰伏的小宇宙完成签到,获得积分10
33秒前
科研通AI2S应助科研小白采纳,获得10
34秒前
34秒前
UU完成签到 ,获得积分10
35秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137561
求助须知:如何正确求助?哪些是违规求助? 2788520
关于积分的说明 7787276
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300093
科研通“疑难数据库(出版商)”最低求助积分说明 625796
版权声明 601023