A temperature stochastic model for option pricing and its impacts on the electricity market

电力市场 吉尔萨诺夫定理 经济 衍生工具(金融) 计量经济学 金融经济学 数学 随机微分方程 工程类 应用数学 电气工程
作者
S. Prabakaran,Isabel Cristina Carbonell García,José U. Mora Mora
出处
期刊:Economic Analysis and Policy [Elsevier]
卷期号:68: 58-77 被引量:10
标识
DOI:10.1016/j.eap.2020.09.001
摘要

Electricity use varies with the weather as changes in temperature and humidity affect the demand for space heating and cooling. The residential end-use sector has the largest seasonal variance with significant spikes in demand every summer and winter. Electricity demand is subject to fluctuations on a seasonal basis, across the week, and during the day and can also be influenced by irregular events. The demand for power fluctuates significantly in the electricity market resulting in significant ancillary costs to suppliers. This article describes weather derivatives in electricity markets and applies the risk management hedging technique for the price fluctuation and electricity demand during weather variations. The main objective of this paper is to construct a temperature stochastic model for option pricing and determine its impact on electricity markets. We begin by briefly considering the construction of the temperature stochastic model under a Fractional Brownian motion which is driven by the fractional Itô formula and the fractional Girsanov theorem. We then extend this staging to the weather derivative market and construct a stochastic model for bond weather derivatives and financial derivatives (weather options). Following that, we construct and derive the option-pricing model from the Black–Scholes equation and build a pricing model for weather derivative instruments based on the weather contribution of the electricity market. Finally, we carried out a numerical example that allows us to see that the predicted option pricing values might differ depending on how temperature is forecasted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RebeccaHe发布了新的文献求助10
1秒前
英姑应助李超采纳,获得10
1秒前
梅红完成签到,获得积分10
1秒前
曹先森发布了新的文献求助10
1秒前
隐形曼青应助明理觅儿采纳,获得10
1秒前
爆米花应助devil采纳,获得10
2秒前
852应助3333采纳,获得10
2秒前
2秒前
3秒前
xhaldlw完成签到,获得积分10
4秒前
orixero应助科研通管家采纳,获得30
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得20
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
积极慕梅应助科研通管家采纳,获得10
5秒前
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
不配.应助tccqq采纳,获得50
5秒前
科研通AI2S应助珊熙采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得30
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
6秒前
Ava应助小虫采纳,获得10
6秒前
zjl1112完成签到,获得积分10
6秒前
SciGPT应助云泥采纳,获得30
6秒前
jinni发布了新的文献求助10
6秒前
研友_Z33zkZ发布了新的文献求助10
6秒前
7秒前
大力完成签到,获得积分10
8秒前
zhenhong发布了新的文献求助10
8秒前
顾矜应助科研进化中采纳,获得10
8秒前
songxiaohong完成签到,获得积分10
8秒前
Jasper应助温柔映阳采纳,获得10
9秒前
风趣夜云发布了新的文献求助10
10秒前
甜甜戎发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148931
求助须知:如何正确求助?哪些是违规求助? 2799908
关于积分的说明 7837731
捐赠科研通 2457479
什么是DOI,文献DOI怎么找? 1307870
科研通“疑难数据库(出版商)”最低求助积分说明 628312
版权声明 601685