亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Profiling Airborne Microbiota in Mechanically Ventilated Buildings Across Seasons in Hong Kong Reveals Higher Metabolic Activity in Low-Abundance Bacteria

丰度(生态学) 相对物种丰度 生物 16S核糖体RNA 生态学 生物扩散 微生物群 微生物种群生物学 细菌 代谢活性 动物 生理学 人口 环境卫生 生物信息学 遗传学 医学
作者
You Zhou,Marcus H. Y. Leung,Xinzhao Tong,Yonghang Lai,Jimmy C Tong,Ian Ridley,Patrick K. H. Lee
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:55 (1): 249-259 被引量:16
标识
DOI:10.1021/acs.est.0c06201
摘要

Metabolically active bacteria within built environments are poorly understood. This study aims to investigate the active airborne bacterial microbiota and compare the total and active microbiota in eight mechanically ventilated buildings over four consecutive seasons using the 16S rRNA gene (rDNA) and the 16S rRNA (rRNA), respectively. The relative abundances of the taxa of presumptive occupants and environmental origins were significantly different between the active and total microbiota. The Sloan neutral model suggested that ecological drift and random dispersal played a smaller role in the assembly of the active microbiota than the total microbiota. The seasonal nature of the active microbiota was consistent with that of the total microbiota in both indoor and outdoor environments, while only the indoor environment was significantly affected by geography. The relative abundances of the active and total taxa were positively correlated, suggesting that the high-abundance members were also the greatest contributors to the community-level metabolic activity. Based on the rRNA/rDNA ratio, the low-abundance members consistently had a higher taxon-level metabolic activity than the high-abundance members over seasons, suggesting that the low-abundance members may have the ability to survive and thrive in the indoor environment and their impact on the health of occupants cannot be overlooked.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ashmitte完成签到,获得积分10
2秒前
四叶草完成签到 ,获得积分10
4秒前
Tender完成签到,获得积分10
12秒前
30秒前
乐乐应助ping采纳,获得10
32秒前
隐形曼青应助杨震采纳,获得30
37秒前
山中蠢驴完成签到,获得积分10
47秒前
1分钟前
嗨e发布了新的文献求助10
1分钟前
1分钟前
子平完成签到 ,获得积分0
1分钟前
杨震发布了新的文献求助30
1分钟前
Yuan应助科研通管家采纳,获得10
1分钟前
ding应助科研通管家采纳,获得10
1分钟前
Yuan应助科研通管家采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
ping发布了新的文献求助10
2分钟前
ping完成签到,获得积分10
2分钟前
小谢完成签到,获得积分10
2分钟前
2分钟前
twk发布了新的文献求助10
2分钟前
科研通AI5应助twk采纳,获得10
2分钟前
MchemG应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
MchemG应助科研通管家采纳,获得10
3分钟前
邹醉蓝完成签到,获得积分10
3分钟前
3分钟前
4分钟前
Oracle应助Xin采纳,获得30
4分钟前
lwioi完成签到,获得积分10
4分钟前
qqq完成签到,获得积分10
5分钟前
5分钟前
Jasper应助科研通管家采纳,获得10
5分钟前
5分钟前
今后应助科研通管家采纳,获得10
5分钟前
fangea23发布了新的文献求助10
5分钟前
fangea23完成签到,获得积分10
5分钟前
清爽夜雪完成签到,获得积分10
6分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733402
求助须知:如何正确求助?哪些是违规求助? 3277618
关于积分的说明 10003433
捐赠科研通 2993616
什么是DOI,文献DOI怎么找? 1642785
邀请新用户注册赠送积分活动 780641
科研通“疑难数据库(出版商)”最低求助积分说明 748912