材料科学
锂(药物)
硼
电解质
微观结构
氧化物
氧化硼
降级(电信)
图层(电子)
涂层
化学工程
电极
阴极
硼酸锂
表面改性
无机化学
纳米技术
复合材料
冶金
硼酸盐玻璃
光电子学
有机化学
兴奋剂
化学
物理化学
内分泌学
工程类
电信
医学
计算机科学
作者
Fanghui Du,Pengpeng Sun,Qun Zhou,Dong Zeng,Die Hu,Zhongxu Fan,Qi Hao,Chengxiang Mei,Tao Xu,Junwei Zheng
标识
DOI:10.1021/acsami.0c16159
摘要
Destructive effects of surface lithium residues introduced in synthesis and degradation of the microstructure and electrode/electrolyte interface during cycling of Ni-rich cathode materials are the major problems hindering their wide application. Herein, we demonstrate an exquisite surface modification strategy that can utilize lithium residues on the surface of LiNi0.8Co0.15Al0.05O2 to form a uniform coating layer of lithium boron oxide on the surface of the material. The resulting lithium boron oxide layer can not only efficiently serve as a protective layer to alleviate the side reactions at the electrode/electrolyte interface but also tightly interlink the primary grains of the LiNi0.8Co0.15Al0.05O2 material to prevent the material from degradation of the microstructure. As a result, the optimized lithium boron oxide-coated LiNi0.8Co0.15Al0.05O2 material exhibits a high initial discharge capacity of 202.1 mAh g–1 at 0.1 C with a great capacity retention of 93.59% after 100 cycles at 2 C. Thus, the uniform lithium boron oxide coating endows the NCA material with excellent structural stability and long-term cycling capability.
科研通智能强力驱动
Strongly Powered by AbleSci AI