Development and Validation of a Preoperative Magnetic Resonance Imaging Radiomics–Based Signature to Predict Axillary Lymph Node Metastasis and Disease-Free Survival in Patients With Early-Stage Breast Cancer

医学 磁共振成像 列线图 乳腺癌 腋窝 放射科 肿瘤科 前哨淋巴结 阶段(地层学) 接收机工作特性 活检 T级 回顾性队列研究 内科学 癌症 淋巴结 转移 外科 古生物学 生物
作者
Yunfang Yu,Yujie Tan,Chuanmiao Xie,Qiugen Hu,Jie Ouyang,Yongjian Chen,Yang Gu,Anlin Li,Nian Lu,Zifan He,Yaping Yang,Kai Chen,Jiafan Ma,Chenchen Li,Mudi Ma,Xiaohong Li,Rong Zhang,Haitao Zhong,Qiyun Ou,Yiwen Zhang
出处
期刊:JAMA network open [American Medical Association]
卷期号:3 (12): e2028086-e2028086 被引量:226
标识
DOI:10.1001/jamanetworkopen.2020.28086
摘要

Axillary lymph node metastasis (ALNM) status, typically estimated using an invasive procedure with a high false-negative rate, strongly affects the prognosis of recurrence in breast cancer. However, preoperative noninvasive tools to accurately predict ALNM status and disease-free survival (DFS) are lacking.To develop and validate dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) radiomic signatures for preoperative identification of ALNM and to assess individual DFS in patients with early-stage breast cancer.This retrospective prognostic study included patients with histologically confirmed early-stage breast cancer diagnosed at 4 hospitals in China from July 3, 2007, to September 21, 2019, randomly divided (7:3) into development and vaidation cohorts. All patients underwent preoperative MRI scans, were treated with surgery and sentinel lymph node biopsy or ALN dissection, and were pathologically examined to determine the ALNM status. Data analysis was conducted from February 15, 2019, to March 20, 2020.Clinical and DCE-MRI radiomic signatures.The primary end points were ALNM and DFS.This study included 1214 women (median [IQR] age, 47 [42-55] years), split into development (849 [69.9%]) and validation (365 [30.1%]) cohorts. The radiomic signature identified ALNM in the development and validation cohorts with areas under the curve (AUCs) of 0.88 and 0.85, respectively, and the clinical-radiomic nomogram accurately predicted ALNM in the development and validation cohorts (AUC, 0.92 and 0.90, respectively) based on a least absolute shrinkage and selection operator (LASSO)-logistic regression model. The radiomic signature predicted 3-year DFS in the development and validation cohorts (AUC, 0.81 and 0.73, respectively), and the clinical-radiomic nomogram could discriminate high-risk from low-risk patients in the development cohort (hazard ratio [HR], 0.04; 95% CI, 0.01-0.11; P < .001) and the validation cohort (HR, 0.04; 95% CI, 0.004-0.32; P < .001) based on a random forest-Cox regression model. The clinical-radiomic nomogram was associated with 3-year DFS in the development and validation cohorts (AUC, 0.89 and 0.90, respectively). The decision curve analysis demonstrated that the clinical-radiomic nomogram displayed better clinical predictive usefulness than the clinical or radiomic signature alone.This study described the application of MRI-based machine learning in patients with breast cancer, presenting novel individualized clinical decision nomograms that could be used to predict ALNM status and DFS. The clinical-radiomic nomograms were useful in clinical decision-making associated with personalized selection of surgical interventions and therapeutic regimens for patients with early-stage breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无花果应助白之玉采纳,获得10
3秒前
南桥发布了新的文献求助10
3秒前
妖孽的二狗完成签到 ,获得积分10
4秒前
5秒前
哈哈哈发布了新的文献求助10
6秒前
彭于晏应助星河采纳,获得10
7秒前
Luoyi发布了新的文献求助20
7秒前
852应助南桥采纳,获得10
8秒前
8秒前
111关闭了111文献求助
8秒前
8秒前
奥特超曼应助隐形的念芹采纳,获得10
8秒前
绅度发布了新的文献求助10
9秒前
9秒前
落后谷兰发布了新的文献求助10
9秒前
10秒前
11秒前
12秒前
超人发布了新的文献求助10
13秒前
11完成签到,获得积分10
13秒前
14秒前
irisjlj发布了新的文献求助10
15秒前
16秒前
我是老大应助Always采纳,获得10
16秒前
高雅晴发布了新的文献求助10
17秒前
18秒前
Theprisoners举报优美的问凝求助涉嫌违规
18秒前
拾年完成签到,获得积分10
18秒前
吃饭了没完成签到,获得积分10
19秒前
20秒前
美好斓发布了新的文献求助10
21秒前
乐乐应助irisjlj采纳,获得10
21秒前
所所应助jkdajsk采纳,获得10
21秒前
落后谷兰完成签到,获得积分20
21秒前
22秒前
23秒前
24秒前
24秒前
25秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993605
求助须知:如何正确求助?哪些是违规求助? 3534372
关于积分的说明 11265282
捐赠科研通 3274119
什么是DOI,文献DOI怎么找? 1806307
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712