Development and Validation of a Preoperative Magnetic Resonance Imaging Radiomics–Based Signature to Predict Axillary Lymph Node Metastasis and Disease-Free Survival in Patients With Early-Stage Breast Cancer

医学 磁共振成像 列线图 乳腺癌 腋窝 放射科 肿瘤科 前哨淋巴结 阶段(地层学) 接收机工作特性 活检 T级 回顾性队列研究 内科学 癌症 淋巴结 转移 外科 古生物学 生物
作者
Yunfang Yu,Yujie Tan,Chuanmiao Xie,Qiugen Hu,Jie Ouyang,Yongjian Chen,Yang Gu,Anlin Li,Nian Lu,Zifan He,Yaping Yang,Kai Chen,Jiafan Ma,Chenchen Li,Mudi Ma,Xiaohong Li,Rong Zhang,Haitao Zhong,Qiyun Ou,Yiwen Zhang,Yufang He,Gang Li,Zhuo Wu,Fengxi Su,Erwei Song,Herui Yao
出处
期刊:JAMA network open [American Medical Association]
卷期号:3 (12): e2028086-e2028086 被引量:183
标识
DOI:10.1001/jamanetworkopen.2020.28086
摘要

Axillary lymph node metastasis (ALNM) status, typically estimated using an invasive procedure with a high false-negative rate, strongly affects the prognosis of recurrence in breast cancer. However, preoperative noninvasive tools to accurately predict ALNM status and disease-free survival (DFS) are lacking.To develop and validate dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) radiomic signatures for preoperative identification of ALNM and to assess individual DFS in patients with early-stage breast cancer.This retrospective prognostic study included patients with histologically confirmed early-stage breast cancer diagnosed at 4 hospitals in China from July 3, 2007, to September 21, 2019, randomly divided (7:3) into development and vaidation cohorts. All patients underwent preoperative MRI scans, were treated with surgery and sentinel lymph node biopsy or ALN dissection, and were pathologically examined to determine the ALNM status. Data analysis was conducted from February 15, 2019, to March 20, 2020.Clinical and DCE-MRI radiomic signatures.The primary end points were ALNM and DFS.This study included 1214 women (median [IQR] age, 47 [42-55] years), split into development (849 [69.9%]) and validation (365 [30.1%]) cohorts. The radiomic signature identified ALNM in the development and validation cohorts with areas under the curve (AUCs) of 0.88 and 0.85, respectively, and the clinical-radiomic nomogram accurately predicted ALNM in the development and validation cohorts (AUC, 0.92 and 0.90, respectively) based on a least absolute shrinkage and selection operator (LASSO)-logistic regression model. The radiomic signature predicted 3-year DFS in the development and validation cohorts (AUC, 0.81 and 0.73, respectively), and the clinical-radiomic nomogram could discriminate high-risk from low-risk patients in the development cohort (hazard ratio [HR], 0.04; 95% CI, 0.01-0.11; P < .001) and the validation cohort (HR, 0.04; 95% CI, 0.004-0.32; P < .001) based on a random forest-Cox regression model. The clinical-radiomic nomogram was associated with 3-year DFS in the development and validation cohorts (AUC, 0.89 and 0.90, respectively). The decision curve analysis demonstrated that the clinical-radiomic nomogram displayed better clinical predictive usefulness than the clinical or radiomic signature alone.This study described the application of MRI-based machine learning in patients with breast cancer, presenting novel individualized clinical decision nomograms that could be used to predict ALNM status and DFS. The clinical-radiomic nomograms were useful in clinical decision-making associated with personalized selection of surgical interventions and therapeutic regimens for patients with early-stage breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助silong采纳,获得10
刚刚
iNk应助玩转非晶采纳,获得10
1秒前
过时的又槐完成签到,获得积分10
1秒前
VDC应助yx采纳,获得30
1秒前
1秒前
zwy完成签到,获得积分10
2秒前
2秒前
欲望被鬼举报gyx求助涉嫌违规
2秒前
123完成签到,获得积分10
2秒前
ljw发布了新的文献求助10
2秒前
3秒前
金阿垚在科研应助yahaha采纳,获得10
3秒前
小冉完成签到,获得积分10
3秒前
深情夏彤完成签到,获得积分10
3秒前
后知后觉发布了新的文献求助10
5秒前
整齐泥猴桃完成签到,获得积分10
5秒前
xiaoxiaomi应助舒涵采纳,获得30
5秒前
情怀应助JERRY采纳,获得10
5秒前
Hungrylunch应助CHL5722采纳,获得20
5秒前
liucong046完成签到,获得积分10
5秒前
5秒前
CodeCraft应助科研cc采纳,获得10
5秒前
6秒前
云里完成签到,获得积分10
6秒前
谦让傲菡完成签到 ,获得积分10
6秒前
小汪完成签到,获得积分10
6秒前
7秒前
qyhl完成签到,获得积分10
7秒前
xwc完成签到,获得积分10
7秒前
Booiys完成签到,获得积分10
8秒前
8秒前
852应助xqwwqx采纳,获得10
8秒前
8秒前
9秒前
HEIKU举报饱饱的芋头求助涉嫌违规
9秒前
相信相信的力量完成签到,获得积分10
9秒前
海风发布了新的文献求助10
9秒前
10秒前
赘婿应助小冉采纳,获得10
10秒前
科研通AI5应助杨杨杨采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672