过电位
电催化剂
分解水
纳米片
材料科学
双功能
催化作用
析氧
碳化钨
双金属片
化学工程
钴
电化学
无机化学
纳米技术
化学
冶金
电极
金属
物理化学
光催化
有机化学
工程类
作者
Jianpo Chen,Bowen Ren,Hao Cui,Chengxin Wang
出处
期刊:Small
[Wiley]
日期:2020-05-07
卷期号:16 (23)
被引量:145
标识
DOI:10.1002/smll.201907556
摘要
Carbides are commonly regarded as efficient hydrogen evolution reaction (HER) catalysts, but their poor oxygen evolution reaction (OER) catalytic activities seriously limit their practical application in overall water splitting. Here, vertically aligned porous cobalt tungsten carbide nanosheet embedded in N-doped carbon matrix (Co6 W6 C@NC) is successfully constructed on flexible carbon cloth (CC) as an efficient bifunctional electrocatalyst for overall water splitting via a facile metal-organic framework (MOF) derived method. The synergistic effect of Co and W atoms effectively tailors the electron state of carbide, optimizing the hydrogen-binding energy. Thus Co6 W6 C@NC shows an enhanced HER performance with an overpotential of 59 mV at a current density of -10 mA cm-2 . Besides, Co6 W6 C@NC easily in situ transforms into tungsten actived cobalt oxide/hydroxide during the OER process, serving as OER active species, which provides an excellent OER activity with an overpotential of 286 mV at a current density of -10 mA cm-2 . The water splitting device, by applying Co6 W6 C@NC as both the cathode and anode, requires a low cell voltage of 1.585 V at 10 mA cm-2 with the great stability in alkaline solution. This work provides a feasible strategy to fabricate bimetallic carbides and explores their possibility as bifunctional catalysts toward overall water splitting.
科研通智能强力驱动
Strongly Powered by AbleSci AI