Lagrangian Neural Networks

齐次空间 人工神经网络 哈密顿量(控制论) 能量守恒 守恒定律 广义相对论 拉格朗日 消散 正则坐标 多样性(控制论) 物理 计算机科学 经典力学 理论物理学 数学 人工智能 数学优化 量子力学 几何学 相空间
作者
Miles Cranmer,Sam Greydanus,Stephan Hoyer,Peter W. Battaglia,David N. Spergel,Shirley Ho
出处
期刊:Cornell University - arXiv 被引量:77
标识
DOI:10.48550/arxiv.2003.04630
摘要

Accurate models of the world are built upon notions of its underlying symmetries. In physics, these symmetries correspond to conservation laws, such as for energy and momentum. Yet even though neural network models see increasing use in the physical sciences, they struggle to learn these symmetries. In this paper, we propose Lagrangian Neural Networks (LNNs), which can parameterize arbitrary Lagrangians using neural networks. In contrast to models that learn Hamiltonians, LNNs do not require canonical coordinates, and thus perform well in situations where canonical momenta are unknown or difficult to compute. Unlike previous approaches, our method does not restrict the functional form of learned energies and will produce energy-conserving models for a variety of tasks. We test our approach on a double pendulum and a relativistic particle, demonstrating energy conservation where a baseline approach incurs dissipation and modeling relativity without canonical coordinates where a Hamiltonian approach fails. Finally, we show how this model can be applied to graphs and continuous systems using a Lagrangian Graph Network, and demonstrate it on the 1D wave equation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不劳而获完成签到 ,获得积分10
1秒前
JUN完成签到,获得积分10
2秒前
shacodow完成签到,获得积分10
3秒前
ll完成签到,获得积分10
5秒前
瞿人雄完成签到,获得积分10
6秒前
龙弟弟完成签到 ,获得积分10
7秒前
没心没肺完成签到,获得积分10
8秒前
学术霸王完成签到,获得积分10
9秒前
1002SHIB完成签到,获得积分10
10秒前
nihaolaojiu完成签到,获得积分10
10秒前
sheetung完成签到,获得积分10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
35秒前
路漫漫其修远兮完成签到 ,获得积分10
36秒前
月下荷花完成签到 ,获得积分10
36秒前
小山己几完成签到,获得积分10
42秒前
李音完成签到 ,获得积分10
49秒前
七厘米发布了新的文献求助10
49秒前
哥哥发布了新的文献求助10
55秒前
周周南完成签到 ,获得积分10
1分钟前
1分钟前
Brenda完成签到,获得积分10
1分钟前
光亮若翠完成签到,获得积分10
1分钟前
忧虑的静柏完成签到 ,获得积分10
1分钟前
颜小喵完成签到 ,获得积分10
1分钟前
悦耳的城完成签到 ,获得积分10
1分钟前
七厘米完成签到,获得积分10
1分钟前
单纯无声完成签到 ,获得积分10
1分钟前
平凡世界完成签到 ,获得积分10
1分钟前
Neko完成签到,获得积分10
1分钟前
fbwg完成签到,获得积分10
1分钟前
Johan完成签到 ,获得积分10
1分钟前
松柏完成签到 ,获得积分10
1分钟前
Song完成签到 ,获得积分10
1分钟前
孙朱珠完成签到,获得积分10
1分钟前
俊逸吐司完成签到 ,获得积分10
2分钟前
feiyang完成签到 ,获得积分10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
研友_VZG7GZ应助www采纳,获得10
2分钟前
HY完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715346
求助须知:如何正确求助?哪些是违规求助? 5233652
关于积分的说明 15274288
捐赠科研通 4866240
什么是DOI,文献DOI怎么找? 2612837
邀请新用户注册赠送积分活动 1562989
关于科研通互助平台的介绍 1520370