亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial intelligence-based classification of schizophrenia: A high density electroencephalographic and support vector machine study

支持向量机 人工智能 模式识别(心理学) 脑电图 精神分裂症(面向对象编程) 接收机工作特性 计算机科学 机器学习 心理学 精神科 程序设计语言
作者
Sai Krishna Tikka,Bikesh Kumar Singh,SHaque Nizamie,Shobit Garg,Sunandan Mandal,Kavita Thakur,LokeshKumar Singh
出处
期刊:Indian Journal of Psychiatry [Medknow]
卷期号:62 (3): 273-273 被引量:34
标识
DOI:10.4103/psychiatry.indianjpsychiatry_91_20
摘要

Interview-based schizophrenia (SCZ) diagnostic methods are not completely valid. Moreover, SCZ-the disease entity is very heterogeneous. Supervised-Machine-Learning (sML) application of Artificial-Intelligence holds a tremendous promise in solving these issues.To sML-based discriminating validity of resting-state electroencephalographic (EEG) quantitative features in classifying SCZ from healthy and, positive (PS) and negative symptom (NS) subgroups, using a high-density recording.Data collected at a tertiary care mental-health institute using a cross-sectional study design and analyzed at a premier Engineering Institute.Data of 38-SCZ patients and 20-healthy controls were retrieved. The positive-negative subgroup classification was done using Positive and Negative Syndrome Scale operational-criteria. EEG was recorded using 256-channel high-density equipment. Eight priori regions-of-interest were selected. Six-level wavelet decomposition and Kernel-Support Vector Machine (SVM) method were used for feature extraction and data classification.Mann-Whitney test was used for comparison of machine learning-features. Accuracy, sensitivity, specificity, and area under receiver operating characteristics-curve were measured as discriminatory indices of classifications.Accuracy of classifying SCZ from healthy and PS from NS SCZ, were 78.95% and 89.29%, respectively. While beta and gamma frequency related features most accurately classified SCZ from healthy controls, delta and theta frequency related features most accurately classified positive from negative SCZ. Inferior frontal gyrus features most accurately contributed to both the classificatory instances.SVM-based classification and sub-classification of SCZ using EEG data is optimal and might help in improving the "validity" and reducing the "heterogeneity" in the diagnosis of SCZ. These results might only be generalized to acute and moderately ill male SCZ patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
14秒前
28秒前
酷波er应助白兰雪花膏采纳,获得10
33秒前
lwenjing发布了新的文献求助10
35秒前
大模型应助lwenjing采纳,获得10
46秒前
48秒前
55秒前
1分钟前
所所应助默默善愁采纳,获得10
1分钟前
www发布了新的文献求助10
1分钟前
CodeCraft应助as采纳,获得10
1分钟前
Hayat应助科研通管家采纳,获得30
1分钟前
2分钟前
SciGPT应助sheen采纳,获得10
2分钟前
无花果应助宋杓采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
sheen发布了新的文献求助10
2分钟前
宋杓发布了新的文献求助10
2分钟前
雨之夏日发布了新的文献求助50
2分钟前
宋杓完成签到,获得积分10
2分钟前
sheen完成签到,获得积分10
2分钟前
AllRightReserved完成签到 ,获得积分10
2分钟前
Cecilia完成签到,获得积分10
2分钟前
开心的万天完成签到,获得积分10
3分钟前
3分钟前
大熊完成签到 ,获得积分10
3分钟前
充电宝应助科研通管家采纳,获得10
3分钟前
彭于晏应助科研通管家采纳,获得10
3分钟前
3分钟前
脑洞疼应助欣慰的铭采纳,获得10
3分钟前
jy完成签到,获得积分20
3分钟前
4分钟前
欣慰的铭发布了新的文献求助10
4分钟前
4分钟前
雨之夏日发布了新的文献求助10
4分钟前
善学以致用应助w123采纳,获得10
4分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302321
求助须知:如何正确求助?哪些是违规求助? 4449504
关于积分的说明 13848409
捐赠科研通 4335689
什么是DOI,文献DOI怎么找? 2380484
邀请新用户注册赠送积分活动 1375488
关于科研通互助平台的介绍 1341703