Artificial intelligence-based classification of schizophrenia: A high density electroencephalographic and support vector machine study

支持向量机 人工智能 模式识别(心理学) 脑电图 精神分裂症(面向对象编程) 接收机工作特性 计算机科学 机器学习 心理学 精神科 程序设计语言
作者
Sai Krishna Tikka,Bikesh Kumar Singh,SHaque Nizamie,Shobit Garg,Sunandan Mandal,Kavita Thakur,LokeshKumar Singh
出处
期刊:Indian Journal of Psychiatry [Medknow]
卷期号:62 (3): 273-273 被引量:34
标识
DOI:10.4103/psychiatry.indianjpsychiatry_91_20
摘要

Interview-based schizophrenia (SCZ) diagnostic methods are not completely valid. Moreover, SCZ-the disease entity is very heterogeneous. Supervised-Machine-Learning (sML) application of Artificial-Intelligence holds a tremendous promise in solving these issues.To sML-based discriminating validity of resting-state electroencephalographic (EEG) quantitative features in classifying SCZ from healthy and, positive (PS) and negative symptom (NS) subgroups, using a high-density recording.Data collected at a tertiary care mental-health institute using a cross-sectional study design and analyzed at a premier Engineering Institute.Data of 38-SCZ patients and 20-healthy controls were retrieved. The positive-negative subgroup classification was done using Positive and Negative Syndrome Scale operational-criteria. EEG was recorded using 256-channel high-density equipment. Eight priori regions-of-interest were selected. Six-level wavelet decomposition and Kernel-Support Vector Machine (SVM) method were used for feature extraction and data classification.Mann-Whitney test was used for comparison of machine learning-features. Accuracy, sensitivity, specificity, and area under receiver operating characteristics-curve were measured as discriminatory indices of classifications.Accuracy of classifying SCZ from healthy and PS from NS SCZ, were 78.95% and 89.29%, respectively. While beta and gamma frequency related features most accurately classified SCZ from healthy controls, delta and theta frequency related features most accurately classified positive from negative SCZ. Inferior frontal gyrus features most accurately contributed to both the classificatory instances.SVM-based classification and sub-classification of SCZ using EEG data is optimal and might help in improving the "validity" and reducing the "heterogeneity" in the diagnosis of SCZ. These results might only be generalized to acute and moderately ill male SCZ patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
嘴嘴完成签到,获得积分10
5秒前
坐忘道发布了新的文献求助10
5秒前
zzzzzzzz完成签到,获得积分10
6秒前
哆啦A梦发布了新的文献求助10
6秒前
conjee发布了新的文献求助30
6秒前
8秒前
大个应助lindahuang采纳,获得10
10秒前
11秒前
宁天发布了新的文献求助10
11秒前
Hopelife完成签到,获得积分10
11秒前
我是老大应助N型半导体采纳,获得10
11秒前
xuaotian完成签到,获得积分10
11秒前
LXH发布了新的文献求助30
14秒前
丰富的土豆应助cody采纳,获得10
15秒前
哆啦A梦完成签到,获得积分10
16秒前
16秒前
17秒前
Lucas应助科研通管家采纳,获得10
17秒前
flywee发布了新的文献求助10
17秒前
小二郎应助科研通管家采纳,获得10
17秒前
17秒前
小二郎应助科研通管家采纳,获得10
17秒前
深情安青应助科研通管家采纳,获得10
17秒前
bkagyin应助科研通管家采纳,获得10
17秒前
Ava应助科研通管家采纳,获得10
17秒前
天天快乐应助DNAdamage采纳,获得10
17秒前
Jasper应助科研通管家采纳,获得10
17秒前
充电宝应助科研通管家采纳,获得10
17秒前
17秒前
18秒前
18秒前
18秒前
jklwss完成签到,获得积分10
18秒前
18秒前
mzf完成签到,获得积分10
19秒前
Orange应助浪里白条采纳,获得10
21秒前
橙子小猪发布了新的文献求助10
21秒前
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952453
求助须知:如何正确求助?哪些是违规求助? 3497823
关于积分的说明 11088977
捐赠科研通 3228398
什么是DOI,文献DOI怎么找? 1784850
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303