Artificial intelligence-based classification of schizophrenia: A high density electroencephalographic and support vector machine study

支持向量机 人工智能 模式识别(心理学) 脑电图 精神分裂症(面向对象编程) 接收机工作特性 计算机科学 机器学习 心理学 精神科 程序设计语言
作者
Sai Krishna Tikka,Bikesh Kumar Singh,SHaque Nizamie,Shobit Garg,Sunandan Mandal,Kavita Thakur,LokeshKumar Singh
出处
期刊:Indian Journal of Psychiatry [Medknow Publications]
卷期号:62 (3): 273-273 被引量:34
标识
DOI:10.4103/psychiatry.indianjpsychiatry_91_20
摘要

Interview-based schizophrenia (SCZ) diagnostic methods are not completely valid. Moreover, SCZ-the disease entity is very heterogeneous. Supervised-Machine-Learning (sML) application of Artificial-Intelligence holds a tremendous promise in solving these issues.To sML-based discriminating validity of resting-state electroencephalographic (EEG) quantitative features in classifying SCZ from healthy and, positive (PS) and negative symptom (NS) subgroups, using a high-density recording.Data collected at a tertiary care mental-health institute using a cross-sectional study design and analyzed at a premier Engineering Institute.Data of 38-SCZ patients and 20-healthy controls were retrieved. The positive-negative subgroup classification was done using Positive and Negative Syndrome Scale operational-criteria. EEG was recorded using 256-channel high-density equipment. Eight priori regions-of-interest were selected. Six-level wavelet decomposition and Kernel-Support Vector Machine (SVM) method were used for feature extraction and data classification.Mann-Whitney test was used for comparison of machine learning-features. Accuracy, sensitivity, specificity, and area under receiver operating characteristics-curve were measured as discriminatory indices of classifications.Accuracy of classifying SCZ from healthy and PS from NS SCZ, were 78.95% and 89.29%, respectively. While beta and gamma frequency related features most accurately classified SCZ from healthy controls, delta and theta frequency related features most accurately classified positive from negative SCZ. Inferior frontal gyrus features most accurately contributed to both the classificatory instances.SVM-based classification and sub-classification of SCZ using EEG data is optimal and might help in improving the "validity" and reducing the "heterogeneity" in the diagnosis of SCZ. These results might only be generalized to acute and moderately ill male SCZ patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无限毛豆完成签到 ,获得积分10
刚刚
1秒前
高高发布了新的文献求助10
1秒前
聪慧烤鸡发布了新的文献求助10
1秒前
3秒前
3秒前
Guo99完成签到,获得积分10
3秒前
在水一方应助元谷雪采纳,获得10
4秒前
4秒前
昭昭找不到完成签到,获得积分10
5秒前
5秒前
清脆剑封完成签到,获得积分10
6秒前
6秒前
小米粥发布了新的文献求助10
6秒前
7秒前
8秒前
bsnc完成签到,获得积分10
8秒前
安妮发布了新的文献求助10
8秒前
外向冰绿完成签到,获得积分10
9秒前
传奇3应助高高采纳,获得10
9秒前
风清扬发布了新的文献求助10
9秒前
郝誉发布了新的文献求助10
9秒前
Jasper应助欣喜易形采纳,获得10
10秒前
Uranus发布了新的文献求助10
11秒前
ALDRC完成签到,获得积分10
11秒前
12秒前
或许度发布了新的文献求助10
12秒前
SciGPT应助Xl采纳,获得10
13秒前
wanci应助明理的帆布鞋采纳,获得10
15秒前
科研通AI6应助fzzf采纳,获得10
15秒前
小二郎应助北克采纳,获得10
15秒前
顾矜应助感动的小懒虫采纳,获得10
15秒前
小火花完成签到,获得积分10
16秒前
17秒前
JM关闭了JM文献求助
18秒前
烟花应助微光熠采纳,获得10
18秒前
20秒前
糊涂的汽车完成签到,获得积分10
20秒前
20秒前
愉快的花卷完成签到,获得积分10
20秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277