Artificial intelligence-based classification of schizophrenia: A high density electroencephalographic and support vector machine study

支持向量机 人工智能 模式识别(心理学) 脑电图 精神分裂症(面向对象编程) 接收机工作特性 计算机科学 机器学习 心理学 精神科 程序设计语言
作者
Sai Krishna Tikka,Bikesh Kumar Singh,SHaque Nizamie,Shobit Garg,Sunandan Mandal,Kavita Thakur,LokeshKumar Singh
出处
期刊:Indian Journal of Psychiatry [Medknow Publications]
卷期号:62 (3): 273-273 被引量:34
标识
DOI:10.4103/psychiatry.indianjpsychiatry_91_20
摘要

Interview-based schizophrenia (SCZ) diagnostic methods are not completely valid. Moreover, SCZ-the disease entity is very heterogeneous. Supervised-Machine-Learning (sML) application of Artificial-Intelligence holds a tremendous promise in solving these issues.To sML-based discriminating validity of resting-state electroencephalographic (EEG) quantitative features in classifying SCZ from healthy and, positive (PS) and negative symptom (NS) subgroups, using a high-density recording.Data collected at a tertiary care mental-health institute using a cross-sectional study design and analyzed at a premier Engineering Institute.Data of 38-SCZ patients and 20-healthy controls were retrieved. The positive-negative subgroup classification was done using Positive and Negative Syndrome Scale operational-criteria. EEG was recorded using 256-channel high-density equipment. Eight priori regions-of-interest were selected. Six-level wavelet decomposition and Kernel-Support Vector Machine (SVM) method were used for feature extraction and data classification.Mann-Whitney test was used for comparison of machine learning-features. Accuracy, sensitivity, specificity, and area under receiver operating characteristics-curve were measured as discriminatory indices of classifications.Accuracy of classifying SCZ from healthy and PS from NS SCZ, were 78.95% and 89.29%, respectively. While beta and gamma frequency related features most accurately classified SCZ from healthy controls, delta and theta frequency related features most accurately classified positive from negative SCZ. Inferior frontal gyrus features most accurately contributed to both the classificatory instances.SVM-based classification and sub-classification of SCZ using EEG data is optimal and might help in improving the "validity" and reducing the "heterogeneity" in the diagnosis of SCZ. These results might only be generalized to acute and moderately ill male SCZ patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
搜集达人应助傲骨采纳,获得10
1秒前
沉静语薇发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
英俊的铭应助张均旗采纳,获得10
2秒前
2秒前
小海绵完成签到,获得积分10
2秒前
2秒前
炫炫炫发布了新的文献求助30
3秒前
5秒前
充电宝应助轻松紫翠采纳,获得10
5秒前
彩色耳机完成签到,获得积分10
5秒前
youyi123发布了新的文献求助10
5秒前
生动靖柔完成签到,获得积分10
5秒前
开放穆发布了新的文献求助10
5秒前
冷傲的靖易完成签到,获得积分20
6秒前
清脆映真完成签到,获得积分10
6秒前
科研通AI6应助幼儿园老大采纳,获得10
6秒前
Barium发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
charih发布了新的文献求助10
8秒前
8秒前
郑方形完成签到,获得积分20
8秒前
9秒前
9秒前
万能图书馆应助贰什柒采纳,获得10
9秒前
研友_Zr2mxZ完成签到,获得积分10
9秒前
小九九完成签到 ,获得积分20
9秒前
风趣安青发布了新的文献求助10
10秒前
ding应助生动靖柔采纳,获得10
10秒前
领导范儿应助不得采纳,获得10
10秒前
cici完成签到,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
科研通AI6应助微笑采纳,获得10
12秒前
12秒前
Tanya47应助陶醉凝丝采纳,获得10
12秒前
清风完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660809
求助须知:如何正确求助?哪些是违规求助? 4835652
关于积分的说明 15091990
捐赠科研通 4819406
什么是DOI,文献DOI怎么找? 2579257
邀请新用户注册赠送积分活动 1533773
关于科研通互助平台的介绍 1492565