Evaluation of interrater reliability of different muscle segmentation techniques in diffusion tensor imaging

纤维束成像 磁共振弥散成像 等级间信度 分割 磁共振成像 医学 计算机科学 放射科 人工智能 数学 统计 评定量表
作者
Johannes Forsting,Robert Rehmann,Marlena Rohm,Martijn Froeling,Lara Schlaffke
出处
期刊:NMR in Biomedicine [Wiley]
卷期号:34 (2) 被引量:9
标识
DOI:10.1002/nbm.4430
摘要

Introduction Muscle diffusion tensor imaging (mDTI) is a quantitative MRI technique that can provide information about muscular microstructure and integrity. Ultrasound and DTI studies have shown intramuscular differences, and therefore separation of different muscles for analysis is essential. The commonly used methods to assess DTI metrics in muscles are manual segmentation and tract‐based analysis. Recently methods such as volume‐based tractography have been applied to optimize muscle architecture estimation, but can also be used to assess DTI metrics. Purpose To evaluate diffusion metrics obtained using three different methods—volume‐based tractography, manual segmentation‐based analysis and tract‐based analysis—with respect to their interrater reliability and their ability to detect intramuscular variance. Materials and methods 30 volunteers underwent an MRI examination in a 3 T scanner using a 16‐channel Torso XL coil. Diffusion‐weighted images were acquired to obtain DTI metrics. These metrics were evaluated in six thigh muscles using volume‐based tractography, manual segmentation and standard tractography. All three methods were performed by two independent raters to assess interrater reliability by ICC analysis and Bland‐Altman plots. Ability to assess intramuscular variance was compared using an ANOVA with muscle as a between‐subjects factor. Results Interrater reliability for all methods was found to be excellent. The highest interrater reliability was found for volume‐based tractography (ICC ≥ 0.967). Significant differences for the factor muscle in all examined diffusion parameters were shown in muscles using all methods (main effect p < 0.001). Conclusions Diffusion data can be assessed by volume tractography, standard tractography and manual segmentation with high interrater reliability. Each method produces different results for the investigated DTI parameters. Volume‐based tractography was superior to conventional manual segmentation and tractography regarding interrater reliability and detection of intramuscular variance, while tract‐based analysis showed the lowest coefficients of variation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助奋斗荣轩采纳,获得10
刚刚
陈瑞完成签到,获得积分10
1秒前
糯糯发布了新的文献求助10
1秒前
Jasper应助雪雪儿采纳,获得10
1秒前
2秒前
2秒前
3秒前
追寻复天完成签到 ,获得积分10
4秒前
ly发布了新的文献求助30
5秒前
wfwl发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
随安发布了新的文献求助10
6秒前
7秒前
7秒前
旷野发布了新的文献求助10
8秒前
JamesHao发布了新的文献求助10
9秒前
9秒前
吾月发布了新的文献求助10
9秒前
JamesPei应助ALUCK采纳,获得10
9秒前
情怀应助liuzhanyu采纳,获得10
10秒前
齐以言完成签到,获得积分10
11秒前
11秒前
核桃发布了新的文献求助10
11秒前
ding应助知己采纳,获得10
11秒前
Ava应助阿丑的小伙伴采纳,获得10
11秒前
小石头发布了新的文献求助10
11秒前
12秒前
1717发布了新的文献求助10
13秒前
柚子皮发布了新的文献求助20
13秒前
拖把粘十完成签到 ,获得积分10
14秒前
北柑完成签到,获得积分20
14秒前
研友_r8YgPn发布了新的文献求助10
15秒前
lzzd031416完成签到,获得积分10
15秒前
Q Eason发布了新的文献求助10
16秒前
布洛芬完成签到,获得积分20
17秒前
lzx发布了新的文献求助10
17秒前
17秒前
JamesHao完成签到,获得积分10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959482
求助须知:如何正确求助?哪些是违规求助? 3505709
关于积分的说明 11125517
捐赠科研通 3237592
什么是DOI,文献DOI怎么找? 1789239
邀请新用户注册赠送积分活动 871614
科研通“疑难数据库(出版商)”最低求助积分说明 802868