数学
不可分解模块
内射函数
诺瑟人
系列(地层学)
作文(语言)
戒指(化学)
内射模
诺瑟环
交换环
纯数学
交换性质
离散数学
组合数学
域代数上的
哲学
古生物学
生物
有机化学
化学
语言学
标识
DOI:10.1081/agb-120022218
摘要
Abstract If R is a commutative ring,then we prove that every finitely generated R-module has a pure-composition series with indecomposable cyclic factors and any two such series are isomorphic if and only if R is a Bézout ring and a CF-ring. When R is a such ring,the length of a pure-composition series of a finitely generated R-module M is compared with its Goldie dimension and we prove that these numbers are equal if and only if M is a direct sum of cyclic modules. We also give an example of an artinian module over a noetherian domain,which has an RD-composition series with uniserial factors. Finally we prove that every pure-injective R-module is RD-injective if and only if R is an arithmetic ring. Key Words: Pure-composition seriesRD-composition seriesArithmetic ringKaplansky ringGoldie dimensionRD-injective modulePure-injective module Acknowledgments
科研通智能强力驱动
Strongly Powered by AbleSci AI