亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Towards Security Threats of Deep Learning Systems: A Survey

计算机科学 深度学习 优势和劣势 计算机安全 对手 对抗制 人工智能 人气 软件部署 工作流程 攻击面 数据科学 软件工程 数据库 社会心理学 心理学 认识论 哲学
作者
Yingzhe He,Guozhu Meng,Kai Chen,Xingbo Hu,Jinwen He
出处
期刊:IEEE Transactions on Software Engineering [Institute of Electrical and Electronics Engineers]
卷期号:48 (5): 1743-1770 被引量:63
标识
DOI:10.1109/tse.2020.3034721
摘要

Deep learning has gained tremendous success and great popularity in the past few years. However, deep learning systems are suffering several inherent weaknesses, which can threaten the security of learning models. Deep learning's wide use further magnifies the impact and consequences. To this end, lots of research has been conducted with the purpose of exhaustively identifying intrinsic weaknesses and subsequently proposing feasible mitigation. Yet few are clear about how these weaknesses are incurred and how effective these attack approaches are in assaulting deep learning. In order to unveil the security weaknesses and aid in the development of a robust deep learning system, we undertake an investigation on attacks towards deep learning, and analyze these attacks to conclude some findings in multiple views. In particular, we focus on four types of attacks associated with security threats of deep learning: model extraction attack, model inversion attack, poisoning attack and adversarial attack. For each type of attack, we construct its essential workflow as well as adversary capabilities and attack goals. Pivot metrics are devised for comparing the attack approaches, by which we perform quantitative and qualitative analyses. From the analysis, we have identified significant and indispensable factors in an attack vector, e.g., how to reduce queries to target models, what distance should be used for measuring perturbation. We shed light on 18 findings covering these approaches' merits and demerits, success probability, deployment complexity and prospects. Moreover, we discuss other potential security weaknesses and possible mitigation which can inspire relevant research in this area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dingm2完成签到 ,获得积分10
2秒前
汉堡包应助lhx采纳,获得10
3秒前
xiong完成签到 ,获得积分10
7秒前
7秒前
wqmx2008完成签到,获得积分10
10秒前
小澜孩完成签到,获得积分10
11秒前
11秒前
12秒前
小澜孩发布了新的文献求助10
13秒前
累累的发布了新的文献求助10
15秒前
bobool关注了科研通微信公众号
16秒前
大气的甜瓜完成签到 ,获得积分10
16秒前
16秒前
lhx发布了新的文献求助10
19秒前
CipherSage应助神勇惜海采纳,获得10
20秒前
achqx发布了新的文献求助10
20秒前
所所应助gao采纳,获得10
23秒前
搜集达人应助疯狂的海菡采纳,获得30
24秒前
健壮的花瓣完成签到 ,获得积分10
24秒前
29秒前
29秒前
大胆海冬完成签到,获得积分10
30秒前
FangyingTang完成签到 ,获得积分10
31秒前
孙行行完成签到,获得积分10
32秒前
在水一方应助LYJ采纳,获得10
33秒前
大胆海冬发布了新的文献求助10
34秒前
XingLinYuan发布了新的文献求助10
34秒前
打地鼠工人完成签到,获得积分10
36秒前
龙骑士25完成签到 ,获得积分10
39秒前
39秒前
lhx完成签到,获得积分10
43秒前
44秒前
神勇惜海发布了新的文献求助10
45秒前
XingLinYuan完成签到,获得积分10
46秒前
46秒前
只要平凡完成签到 ,获得积分10
46秒前
46秒前
48秒前
49秒前
daizi发布了新的文献求助10
49秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538906
求助须知:如何正确求助?哪些是违规求助? 3116600
关于积分的说明 9326048
捐赠科研通 2814589
什么是DOI,文献DOI怎么找? 1546891
邀请新用户注册赠送积分活动 720659
科研通“疑难数据库(出版商)”最低求助积分说明 712145