4D Printing of shape-memory polymeric scaffolds for adaptive biomedical implantation

材料科学 形状记忆聚合物 形状记忆合金 制作 3D打印 纳米技术 丙烯酸酯 聚合物 复合材料 生物医学工程 医学 替代医学 单体 病理
作者
Cheng Zhang,Dunpeng Cai,Ping Liao,Jheng‐Wun Su,Heng Deng,Bongkosh Vardhanabhuti,Bret D. Ulery,Shi‐You Chen,Jian Lin
出处
期刊:Acta Biomaterialia [Elsevier]
卷期号:122: 101-110 被引量:139
标识
DOI:10.1016/j.actbio.2020.12.042
摘要

4D printing has shown great potential in a variety of biomedical applications due to the adaptability and minimal invasiveness of fabricated devices. However, commonly employed shape memory polymers (SMPs) possess undesirable transition temperatures (Ttranss), leading to complications in implantation operations. Herein, we demonstrate 4D printing of a new SMP named poly(glycerol dodecanoate) acrylate (PGDA) with a Ttrans in a range of 20 °C - 37 °C making it appropriate for shape programming at room temperature and then shape deployment within the human body. In addition, the material possesses suitable rheological properties to allow for the fabrication of a variety of delicate 3D structures such as "triangular star", "six-petal flower", "honeycomb", "tube", tilted "truncated hollow cones", as well as overhanging "bridge", "cage", and "mesh". The printed 3D structures show shape memory properties including a large fixity ratio of 100% at 20 °C, a large recovery ratio of 98% at 37 °C, a stable cyclability of > 100 times, and a fast recovery speed of 0.4 s at 37 °C. Moreover, the Young's moduli of the printed structures can be decreased by 5 times due to the phase transition of PGDA, which is compatible with biological tissues. Finally, in vitro stenting and in vivo vascular grafting demonstrated the geometrical and mechanical adaptivity of the printed constructs for biomedical implantation. This newly developed PGDA SMP based 4D printing technology has the potential to pave a new route to the fabrication of shape memory scaffolds for personalized biomedical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AN发布了新的文献求助30
刚刚
ding应助晚塬采纳,获得10
刚刚
CMUSK发布了新的文献求助10
刚刚
wonder完成签到 ,获得积分20
刚刚
佟鹭其发布了新的文献求助10
1秒前
刘雄伟发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
will发布了新的文献求助10
3秒前
lzy应助跳跃的寄瑶采纳,获得10
3秒前
阿财关注了科研通微信公众号
3秒前
Jasper应助PengchengMa采纳,获得10
4秒前
4秒前
xunmacaoyan完成签到,获得积分10
5秒前
cjl完成签到 ,获得积分10
5秒前
丘比特应助多多采纳,获得10
5秒前
5秒前
6秒前
666发布了新的文献求助10
6秒前
东晓完成签到,获得积分10
6秒前
研友_nqreGZ发布了新的文献求助10
6秒前
asd应助957采纳,获得30
7秒前
seall完成签到,获得积分10
7秒前
李爱国应助Elanie.zh采纳,获得10
7秒前
海纳百川完成签到,获得积分10
7秒前
酷酷的贝总完成签到,获得积分10
7秒前
小马甲应助魔幻三问采纳,获得10
7秒前
7秒前
8秒前
8秒前
庚123发布了新的文献求助10
9秒前
9秒前
酷波er应助yangjun采纳,获得10
9秒前
科研通AI6应助顾闭月采纳,获得100
10秒前
10秒前
李爱国应助輕瘋采纳,获得10
10秒前
666完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648206
求助须知:如何正确求助?哪些是违规求助? 4775141
关于积分的说明 15043236
捐赠科研通 4807251
什么是DOI,文献DOI怎么找? 2570608
邀请新用户注册赠送积分活动 1527392
关于科研通互助平台的介绍 1486407