Energetic potential of hexogen constructed by machine learning

均方误差 人工神经网络 计算机科学 试验装置 Crystal(编程语言) 算法 Atom(片上系统) 集合(抽象数据类型) 功能(生物学) 爆炸物 结转(投资) 人工智能 数学 化学 统计 进化生物学 生物 嵌入式系统 经济 有机化学 程序设计语言 财务
作者
Pengju Wang,Junyu Fan,Yan Su,Jijun Zhao
出处
期刊:Chinese Physics [Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences]
卷期号:69 (23): 238702-238702 被引量:9
标识
DOI:10.7498/aps.69.20200690
摘要

1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) or hexogen, a high-insensitivity explosive, the accurately description of its energy and properties is of fundamental significance in the sense of security and application. Based on the machine learning method, high-dimensional neural network is used to construct potential function of RDX crystal. In order to acquire enough data in neural network learning, based on the four known crystal phases of RDX, the structural global search is performed under different spatial groups to obtain 15199 structure databases. Here in this study, we use nearby atomic environment to build 72 different basis functions as input neurons, in which the 72 different basis functions represent the interaction with nearby atoms for each type of element. Among them, 90% data are randomly set as training set, and the remaining 10% data are taken as test set. To obtain the better training effect, 9 different neural network structures carry out 2000 step iterations at most, thereby the 30-30-10 hidden layer structure has the lower root mean square error (RMSE) after the 1847 iterations compared with the energies from first-principles calculations. Thus, the potential function fitted by 30-30-10 hidden layer network is chosen in subsequent calculations. This constructed potential function can reproduce the first-principles results of test set well, with the RMSE of 59.2 meV/atom for binding energy and 7.17 eV/Å for atomic force. Especially, the RMSE of the four known RDX crystal phases from 1 atm to 6 GPa are 10.0 meV/atom and 1.11 eV/Å for binding energy and atomic force, respectively, indicating that the potential function has a better description of the known structures. Furthermore, we also propose four additional RDX crystal phases with lower enthalpy, which may be alternative crystal phases undetermined in experiment. In addition, based on molecular dynamics simulation with this potential function, the <i>α</i>-phase RDX crystal can stay stable for a few ps, further proving the applicability of our constructed potential function.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梁梁梁完成签到,获得积分10
刚刚
1秒前
枯藤老柳树完成签到,获得积分10
2秒前
2秒前
北城南笙发布了新的文献求助10
2秒前
2秒前
王猪猪爱吃面包完成签到,获得积分20
3秒前
swi初完成签到,获得积分10
4秒前
姜姜姜姜发布了新的文献求助10
7秒前
北城南笙完成签到,获得积分10
8秒前
唐茂寒发布了新的文献求助10
8秒前
zoey完成签到,获得积分10
8秒前
慕青应助优秀的白卉采纳,获得10
9秒前
9秒前
kilo完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
Jackson333完成签到,获得积分10
11秒前
白小白完成签到,获得积分10
12秒前
kunkun发布了新的文献求助10
12秒前
阿啵呲嘚呃of咯完成签到 ,获得积分10
12秒前
13秒前
16秒前
唐茂寒完成签到,获得积分10
17秒前
xsx发布了新的文献求助10
19秒前
liubing发布了新的文献求助10
20秒前
21秒前
22秒前
lihaifeng发布了新的文献求助10
22秒前
田様应助单纯的石头采纳,获得10
23秒前
24秒前
量子星尘发布了新的文献求助10
24秒前
ky一下完成签到,获得积分10
24秒前
坤坤发布了新的文献求助20
24秒前
26秒前
Wangyingjie5发布了新的文献求助10
26秒前
lgq12697应助刘老哥6采纳,获得10
27秒前
aser发布了新的文献求助10
27秒前
TALE发布了新的文献求助10
27秒前
科研通AI6应助1huiqina采纳,获得30
27秒前
科研通AI6应助空啊空采纳,获得10
28秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453696
求助须知:如何正确求助?哪些是违规求助? 4561241
关于积分的说明 14281357
捐赠科研通 4485225
什么是DOI,文献DOI怎么找? 2456535
邀请新用户注册赠送积分活动 1447276
关于科研通互助平台的介绍 1422687