Energetic potential of hexogen constructed by machine learning

均方误差 人工神经网络 计算机科学 试验装置 Crystal(编程语言) 算法 Atom(片上系统) 集合(抽象数据类型) 功能(生物学) 爆炸物 结转(投资) 人工智能 数学 化学 统计 进化生物学 生物 嵌入式系统 经济 有机化学 程序设计语言 财务
作者
Pengju Wang,Jing Fan,Yan Su,Jijun Zhao
出处
期刊:Chinese Physics [Science Press]
卷期号:69 (23): 238702-238702 被引量:8
标识
DOI:10.7498/aps.69.20200690
摘要

1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) or hexogen, a high-insensitivity explosive, the accurately description of its energy and properties is of fundamental significance in the sense of security and application. Based on the machine learning method, high-dimensional neural network is used to construct potential function of RDX crystal. In order to acquire enough data in neural network learning, based on the four known crystal phases of RDX, the structural global search is performed under different spatial groups to obtain 15199 structure databases. Here in this study, we use nearby atomic environment to build 72 different basis functions as input neurons, in which the 72 different basis functions represent the interaction with nearby atoms for each type of element. Among them, 90% data are randomly set as training set, and the remaining 10% data are taken as test set. To obtain the better training effect, 9 different neural network structures carry out 2000 step iterations at most, thereby the 30-30-10 hidden layer structure has the lower root mean square error (RMSE) after the 1847 iterations compared with the energies from first-principles calculations. Thus, the potential function fitted by 30-30-10 hidden layer network is chosen in subsequent calculations. This constructed potential function can reproduce the first-principles results of test set well, with the RMSE of 59.2 meV/atom for binding energy and 7.17 eV/Å for atomic force. Especially, the RMSE of the four known RDX crystal phases from 1 atm to 6 GPa are 10.0 meV/atom and 1.11 eV/Å for binding energy and atomic force, respectively, indicating that the potential function has a better description of the known structures. Furthermore, we also propose four additional RDX crystal phases with lower enthalpy, which may be alternative crystal phases undetermined in experiment. In addition, based on molecular dynamics simulation with this potential function, the <i>α</i>-phase RDX crystal can stay stable for a few ps, further proving the applicability of our constructed potential function.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
熊熊熊完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
QOP应助123采纳,获得10
1秒前
iceice发布了新的文献求助10
2秒前
3秒前
3秒前
舟遥遥发布了新的文献求助10
3秒前
sjyu1985发布了新的文献求助10
4秒前
4秒前
4秒前
浮游应助山井寿采纳,获得10
4秒前
4秒前
科研通AI5应助tcc采纳,获得10
5秒前
念心发布了新的文献求助10
5秒前
5秒前
5秒前
善学以致用应助xzx采纳,获得30
6秒前
Yipou发布了新的文献求助10
6秒前
6秒前
某某发布了新的文献求助10
6秒前
Rg发布了新的文献求助10
6秒前
7秒前
7秒前
林夕发布了新的文献求助10
7秒前
7秒前
7秒前
机智猴发布了新的文献求助10
7秒前
7秒前
8秒前
qqq发布了新的文献求助10
8秒前
杨天天发布了新的文献求助10
9秒前
9秒前
sada发布了新的文献求助10
9秒前
执玉发布了新的文献求助10
9秒前
小懒鬼完成签到,获得积分10
10秒前
hhh发布了新的文献求助10
10秒前
天天快乐应助科研小狗采纳,获得10
10秒前
英勇的碧完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4885604
求助须知:如何正确求助?哪些是违规求助? 4170370
关于积分的说明 12941471
捐赠科研通 3931146
什么是DOI,文献DOI怎么找? 2156910
邀请新用户注册赠送积分活动 1175305
关于科研通互助平台的介绍 1079897