A reinforcement learning based multi-method approach for stochastic resource constrained project scheduling problems

计算机科学 强化学习 数学优化 布谷鸟搜索 调度(生产过程) 人工智能 地铁列车时刻表 机器学习 数学 粒子群优化 操作系统
作者
Karam M. Sallam,Ripon K. Chakrabortty,Michael J. Ryan
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:169: 114479-114479 被引量:36
标识
DOI:10.1016/j.eswa.2020.114479
摘要

The Resource-Constrained Project Scheduling Problem (RCPSP) has been widely accepted as a challenging research topic due to its NP-hard nature. Because of the dynamic nature of real-world problems, stochastic-RCPSPs (SRCPSPs) are also receiving greater attention among researchers. To solve these extended RCPSPs (i.e., SRCPSPs), this paper proposes an reinforcement learning based meta-heuristic switching approach that utilizes the powers of both multi-operator differential evolution (MODE) and discrete cuckoo search (DCS) algorithms in single algorithmic framework. Reinforcement learning (RL) is introduced as a technique to select either MODE or DCS based on the diversity of population and quality of solutions. To deal with uncertain durations, a chance-constrained based approach with some belief degrees is also considered and solved by this proposed RL based multi-method approach (i.e., DECSwRL-CC). Extensive experimentation with benchmark data from the project scheduling library (PSPLIB) demonstrates the efficacy of this proposed multi-method approach. Numerous state of the art chance constrained approaches are taken from the literature to compare the proposed approach and to validate the efficacy of this multi-method approach. This particular strategy is applicable to the risk-averse decision-makers who want to realize the project schedule with a high degree of certainty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诸岩完成签到,获得积分10
刚刚
1秒前
1秒前
qqqqq完成签到,获得积分10
2秒前
充电宝应助Passskd采纳,获得10
2秒前
3秒前
3秒前
5秒前
内向南风完成签到 ,获得积分10
7秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
顾矜应助科研通管家采纳,获得10
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
Maestro_S应助科研通管家采纳,获得10
9秒前
wanci应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得30
9秒前
9秒前
高高亿先应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
9秒前
ding应助科研通管家采纳,获得10
9秒前
1sunpf完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
spf完成签到,获得积分10
10秒前
荒野风发布了新的文献求助10
10秒前
luxkex完成签到,获得积分10
10秒前
10秒前
奶黄包发布了新的文献求助10
10秒前
有求必_应完成签到,获得积分10
11秒前
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038426
求助须知:如何正确求助?哪些是违规求助? 3576119
关于积分的说明 11374556
捐赠科研通 3305834
什么是DOI,文献DOI怎么找? 1819339
邀请新用户注册赠送积分活动 892678
科研通“疑难数据库(出版商)”最低求助积分说明 815029