A reinforcement learning based multi-method approach for stochastic resource constrained project scheduling problems

计算机科学 强化学习 数学优化 布谷鸟搜索 调度(生产过程) 人工智能 地铁列车时刻表 机器学习 数学 粒子群优化 操作系统
作者
Karam M. Sallam,Ripon K. Chakrabortty,Michael J. Ryan
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:169: 114479-114479 被引量:36
标识
DOI:10.1016/j.eswa.2020.114479
摘要

The Resource-Constrained Project Scheduling Problem (RCPSP) has been widely accepted as a challenging research topic due to its NP-hard nature. Because of the dynamic nature of real-world problems, stochastic-RCPSPs (SRCPSPs) are also receiving greater attention among researchers. To solve these extended RCPSPs (i.e., SRCPSPs), this paper proposes an reinforcement learning based meta-heuristic switching approach that utilizes the powers of both multi-operator differential evolution (MODE) and discrete cuckoo search (DCS) algorithms in single algorithmic framework. Reinforcement learning (RL) is introduced as a technique to select either MODE or DCS based on the diversity of population and quality of solutions. To deal with uncertain durations, a chance-constrained based approach with some belief degrees is also considered and solved by this proposed RL based multi-method approach (i.e., DECSwRL-CC). Extensive experimentation with benchmark data from the project scheduling library (PSPLIB) demonstrates the efficacy of this proposed multi-method approach. Numerous state of the art chance constrained approaches are taken from the literature to compare the proposed approach and to validate the efficacy of this multi-method approach. This particular strategy is applicable to the risk-averse decision-makers who want to realize the project schedule with a high degree of certainty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一一完成签到 ,获得积分20
2秒前
moodlunatic完成签到,获得积分10
3秒前
3秒前
Tina酱完成签到 ,获得积分10
4秒前
咿犽完成签到 ,获得积分20
5秒前
5秒前
阿玛特拉斯完成签到,获得积分10
6秒前
8秒前
CC关注了科研通微信公众号
10秒前
msp发布了新的文献求助10
11秒前
LY完成签到,获得积分10
11秒前
12秒前
宋笨笨完成签到 ,获得积分10
13秒前
13秒前
1x3发布了新的文献求助10
14秒前
Sam完成签到,获得积分10
17秒前
于雷是我完成签到,获得积分10
18秒前
yqz发布了新的文献求助30
19秒前
21秒前
香蕉觅云应助粉条采纳,获得10
23秒前
英姑应助Nicole采纳,获得10
24秒前
朴实子骞完成签到 ,获得积分10
25秒前
chenxin完成签到,获得积分10
26秒前
Iiiilr完成签到 ,获得积分10
26秒前
生动刺猬发布了新的文献求助10
26秒前
852应助小萝卜采纳,获得10
27秒前
夕阳与茶完成签到,获得积分10
27秒前
佳佳应助CyS采纳,获得10
27秒前
28秒前
乱武完成签到,获得积分10
28秒前
Aloha完成签到,获得积分10
29秒前
30秒前
11应助夕阳与茶采纳,获得10
31秒前
HJJHJH发布了新的文献求助50
32秒前
33秒前
eeeating完成签到,获得积分10
34秒前
田様应助notsoeasy采纳,获得10
35秒前
刘旋发布了新的文献求助10
35秒前
和谐绍辉完成签到,获得积分20
35秒前
科研通AI2S应助CyS采纳,获得10
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976210
求助须知:如何正确求助?哪些是违规求助? 3520366
关于积分的说明 11203088
捐赠科研通 3256965
什么是DOI,文献DOI怎么找? 1798570
邀请新用户注册赠送积分活动 877738
科研通“疑难数据库(出版商)”最低求助积分说明 806516