A reinforcement learning based multi-method approach for stochastic resource constrained project scheduling problems

计算机科学 强化学习 数学优化 布谷鸟搜索 调度(生产过程) 人工智能 地铁列车时刻表 机器学习 数学 粒子群优化 操作系统
作者
Karam M. Sallam,Ripon K. Chakrabortty,Michael J. Ryan
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:169: 114479-114479 被引量:36
标识
DOI:10.1016/j.eswa.2020.114479
摘要

The Resource-Constrained Project Scheduling Problem (RCPSP) has been widely accepted as a challenging research topic due to its NP-hard nature. Because of the dynamic nature of real-world problems, stochastic-RCPSPs (SRCPSPs) are also receiving greater attention among researchers. To solve these extended RCPSPs (i.e., SRCPSPs), this paper proposes an reinforcement learning based meta-heuristic switching approach that utilizes the powers of both multi-operator differential evolution (MODE) and discrete cuckoo search (DCS) algorithms in single algorithmic framework. Reinforcement learning (RL) is introduced as a technique to select either MODE or DCS based on the diversity of population and quality of solutions. To deal with uncertain durations, a chance-constrained based approach with some belief degrees is also considered and solved by this proposed RL based multi-method approach (i.e., DECSwRL-CC). Extensive experimentation with benchmark data from the project scheduling library (PSPLIB) demonstrates the efficacy of this proposed multi-method approach. Numerous state of the art chance constrained approaches are taken from the literature to compare the proposed approach and to validate the efficacy of this multi-method approach. This particular strategy is applicable to the risk-averse decision-makers who want to realize the project schedule with a high degree of certainty.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助linda采纳,获得10
1秒前
1秒前
Akim应助ww采纳,获得10
1秒前
小李发布了新的文献求助10
1秒前
1秒前
sube完成签到,获得积分20
2秒前
3秒前
Hello应助刘若鑫采纳,获得10
3秒前
3秒前
热心树叶应助小巧的柚子采纳,获得50
3秒前
4秒前
4秒前
sssa发布了新的文献求助10
4秒前
123完成签到,获得积分10
6秒前
6秒前
风趣小蜜蜂完成签到 ,获得积分10
6秒前
6秒前
GodZ发布了新的文献求助10
6秒前
zp发布了新的文献求助10
7秒前
彭仲康完成签到,获得积分10
7秒前
从容仙人完成签到,获得积分10
7秒前
开心的渊思完成签到 ,获得积分10
8秒前
8秒前
8秒前
ohh发布了新的文献求助10
9秒前
9秒前
9秒前
瓶子君152完成签到,获得积分10
10秒前
10秒前
今后应助山药采纳,获得30
10秒前
陈橙橙完成签到,获得积分10
11秒前
ccc完成签到,获得积分10
11秒前
11秒前
11秒前
li完成签到,获得积分10
12秒前
12秒前
哎健身发布了新的文献求助10
12秒前
12秒前
12秒前
小蘑菇应助孤巷的猫采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578302
求助须知:如何正确求助?哪些是违规求助? 4663150
关于积分的说明 14745051
捐赠科研通 4603900
什么是DOI,文献DOI怎么找? 2526774
邀请新用户注册赠送积分活动 1496369
关于科研通互助平台的介绍 1465712