倾斜(摄像机)
稳健性(进化)
声学
数组处理
灵敏度(控制系统)
计算机科学
自适应波束形成器
传感器阵列
噪音(视频)
波束赋形
数学
信号处理
物理
人工智能
电信
工程类
几何学
电子工程
雷达
机器学习
图像(数学)
基因
化学
生物化学
作者
Gihoon Byun,Hunter Akins,Hee‐Chun Song,W. A. Kuperman
出处
期刊:Journal of the Acoustical Society of America
[Acoustical Society of America]
日期:2019-10-01
卷期号:146 (4_Supplement): 2962-2962
被引量:2
摘要
Adaptive matched field processing with the minimum variance beamformer provides excellent sidelobe suppression for source localization, but suffers from sensitivity to mismatch between the modeled and true acoustic field (i.e., environmental mismatch). To increase tolerance to the mismatch while retaining satisfactory sidelobe control, robust algorithms such as the white noise constraint (WNC) can be employed. The WNC alone, however, is not sufficient when the mismatch results from an unknown array tilt (i.e., geometric mismatch). This study introduces an adaptive matched field beamformer that is tolerant to both array tilt and environmental mismatch. By modeling the pressure fields corresponding to a set of assumed tilt angles, we impose multiple constraints that, when applied to the beamformer, increase robustness to the array tilt. Simulations and data results are presented to demonstrate localization and tracking of a surface ship (200–500 Hz) using a 16-element, 56-m long, tilted vertical array in approximately 100-m deep shallow water.
科研通智能强力驱动
Strongly Powered by AbleSci AI