乙状窦函数
激活函数
反向传播
人工神经网络
计算机科学
功能(生物学)
算法
二进制数
图层(电子)
人工智能
数学
算术
进化生物学
生物
有机化学
化学
作者
Renas Rajab Asaad,Rasan Ismail Ali
出处
期刊:Academic journal of Nawroz University
[Nawroz University]
日期:2019-11-14
卷期号:8 (4): 216-221
被引量:30
标识
DOI:10.25007/ajnu.v8n4a464
摘要
Back propagation neural network are known for computing the problems that cannot easily be computed (huge datasets analysis or training) in artificial neural networks. The main idea of this paper is to implement XOR logic gate by ANNs using back propagation neural network for back propagation of errors, and sigmoid activation function. This neural network to map non-linear threshold gate. The non-linear used to classify binary inputs (x1, x2) and passing it through hidden layer for computing coefficient_errors and gradient_errors (Cerrors, Gerrors), after computing errors by (ei = Output_desired- Output_actual) the weights and thetas (ΔWji = (α)(Xj)(gi), Δϴj = (α)(-1)(gi)) are changing according to errors. Sigmoid activation function is = sig(x)=1/(1+e-x) and Derivation of sigmoid is = dsig(x) = sig(x)(1-sig(x)). The sig(x) and Dsig(x) is between 1 to 0.
科研通智能强力驱动
Strongly Powered by AbleSci AI