Short-term wind power forecasting based on support vector machine with improved dragonfly algorithm

风力发电 支持向量机 风电预测 人工神经网络 电力系统 期限(时间) 功率(物理) 可再生能源 计算机科学 风速 算法 网格 工程类 机器学习 气象学 数学 电气工程 物理 量子力学 几何学
作者
Lin Li,Xue Zhao,Ming‐Lang Tseng,Raymond R. Tan
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:242: 118447-118447 被引量:319
标识
DOI:10.1016/j.jclepro.2019.118447
摘要

It is hard to predict wind power with high-precision due to its non-stationary and stochastic nature. The wind power has developed rapidly around the world as a promising renewable energy industry. The uncertainty of wind power brings difficult challenges to the operation of the power system with the integration of wind farms into power grid. Accurate wind power prediction is increasingly important for the stable operation of wind farms and the power grid. This study is combined support vector machine and improved dragonfly algorithm to forecast short-term wind power for a hybrid prediction model. The adaptive learning factor and differential evolution strategy are introduced to improve the performance of traditional dragonfly algorithm. The improved dragonfly algorithm is used to choose the optimal parameters of support vector machine. The effectiveness of the proposed model has been confirmed on the real datasets derived from La Haute Borne wind farm in France. The proposed model has shown better prediction performance compared with the other models such as back propagation neural network and Gaussian process regression. The proposed model is suitable for short-term wind power prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助科研通管家采纳,获得10
1秒前
1101592875应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得30
1秒前
大龙哥886应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得30
1秒前
宅多点应助科研通管家采纳,获得10
1秒前
1101592875应助科研通管家采纳,获得10
1秒前
1秒前
shhoing应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
雨姐科研应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
Z1987完成签到,获得积分10
2秒前
宅多点应助科研通管家采纳,获得10
2秒前
雨姐科研应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
arizaki7应助科研通管家采纳,获得10
2秒前
大龙哥886应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
行者无疆发布了新的文献求助10
2秒前
HaonanZhang应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
宅多点应助科研通管家采纳,获得10
2秒前
雨姐科研应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
雨姐科研应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
浮游应助科研通管家采纳,获得10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560110
求助须知:如何正确求助?哪些是违规求助? 4645276
关于积分的说明 14674677
捐赠科研通 4586381
什么是DOI,文献DOI怎么找? 2516410
邀请新用户注册赠送积分活动 1490066
关于科研通互助平台的介绍 1460866