Short-term wind power forecasting based on support vector machine with improved dragonfly algorithm

风力发电 支持向量机 风电预测 人工神经网络 电力系统 期限(时间) 功率(物理) 可再生能源 计算机科学 风速 算法 网格 工程类 机器学习 气象学 数学 电气工程 物理 量子力学 几何学
作者
Lin Li,Xue Zhao,Ming‐Lang Tseng,Raymond R. Tan
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:242: 118447-118447 被引量:319
标识
DOI:10.1016/j.jclepro.2019.118447
摘要

It is hard to predict wind power with high-precision due to its non-stationary and stochastic nature. The wind power has developed rapidly around the world as a promising renewable energy industry. The uncertainty of wind power brings difficult challenges to the operation of the power system with the integration of wind farms into power grid. Accurate wind power prediction is increasingly important for the stable operation of wind farms and the power grid. This study is combined support vector machine and improved dragonfly algorithm to forecast short-term wind power for a hybrid prediction model. The adaptive learning factor and differential evolution strategy are introduced to improve the performance of traditional dragonfly algorithm. The improved dragonfly algorithm is used to choose the optimal parameters of support vector machine. The effectiveness of the proposed model has been confirmed on the real datasets derived from La Haute Borne wind farm in France. The proposed model has shown better prediction performance compared with the other models such as back propagation neural network and Gaussian process regression. The proposed model is suitable for short-term wind power prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
远坂时辰发布了新的文献求助10
1秒前
小欧医生完成签到,获得积分10
1秒前
小值钱完成签到,获得积分10
1秒前
英姑应助阿冰采纳,获得10
1秒前
无敌大忽悠完成签到 ,获得积分10
2秒前
Kkk发布了新的文献求助10
2秒前
2秒前
欧阳静芙完成签到,获得积分10
2秒前
王娇娇发布了新的文献求助10
3秒前
半信美玉完成签到,获得积分10
3秒前
4秒前
jiabaoyu发布了新的文献求助10
4秒前
4秒前
奋斗的珍完成签到,获得积分10
5秒前
5秒前
拉长的莫茗完成签到,获得积分10
7秒前
111完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
好纠结完成签到,获得积分10
8秒前
8秒前
9秒前
瑾瑜发布了新的文献求助10
9秒前
11秒前
11秒前
玛卡巴卡发布了新的文献求助30
11秒前
Amazing发布了新的文献求助10
11秒前
RuolinWu发布了新的文献求助10
11秒前
友好的尔容完成签到,获得积分10
12秒前
BEST完成签到 ,获得积分10
13秒前
诗蕊完成签到 ,获得积分0
13秒前
Ilyas0525完成签到,获得积分10
13秒前
在水一方应助jinjun采纳,获得10
14秒前
16秒前
毛豆应助小徐爱吃螃蟹采纳,获得10
16秒前
良辰应助ruo采纳,获得10
16秒前
Berrymeng完成签到,获得积分20
16秒前
16秒前
knowledgemaster完成签到,获得积分20
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307944
求助须知:如何正确求助?哪些是违规求助? 2941498
关于积分的说明 8503719
捐赠科研通 2615996
什么是DOI,文献DOI怎么找? 1429333
科研通“疑难数据库(出版商)”最低求助积分说明 663724
邀请新用户注册赠送积分活动 648678