模型预测控制
弹道
控制理论(社会学)
避障
避碰
计算机科学
职位(财务)
控制器(灌溉)
加速度
障碍物
车辆动力学
碰撞
移动机器人
工程类
控制(管理)
人工智能
机器人
农学
计算机安全
财务
法学
政治学
汽车工程
经济
物理
天文
生物
经典力学
作者
Shaosong Li,Zheng Li,Zhanjiang Yu,Niaona Zhang
出处
期刊:IEEE Access
[Institute of Electrical and Electronics Engineers]
日期:2019-01-01
卷期号:7: 132074-132086
被引量:51
标识
DOI:10.1109/access.2019.2940758
摘要
In this study, an obstacle avoidance controller based on nonlinear model predictive control is designed in autonomous vehicle navigation. The reference trajectory is predefined using a sigmoid function in accordance with road conditions. When obstacles suddenly appear on a predefined trajectory, the reference trajectory should be adjusted dynamically. For dynamic obstacles, a moving trend function is constructed to predict the obstacle position variances in the predictive horizon. Furthermore, a risk index is constructed and introduced into the cost function to realize collision avoidance by combining the relative position relationship between vehicle and obstacles in the predictive horizon. Meanwhile, lateral acceleration constraint is also considered to ensure vehicle stability. Finally, trajectory dynamic planning and tracking are integrated into a single-level model predictive controller. Simulation tests reveal that the designed controller can ensure real-time trajectory tracking and collision avoidance.
科研通智能强力驱动
Strongly Powered by AbleSci AI