Anisotropic Guided Filtering

滤波器(信号处理) 边缘保持平滑 各项异性扩散 自适应滤波器 核自适应滤波器 人工智能 计算机视觉 滤波器设计 增采样 根升余弦滤波器 计算机科学 双边滤波器 图像处理 复合图像滤波器 数学 算法 图像(数学)
作者
Carlo Noel Ochotorena,Yukihiko Yamashita
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 1397-1412 被引量:68
标识
DOI:10.1109/tip.2019.2941326
摘要

The guided filter and its subsequent derivatives have been widely employed in many image processing and computer vision applications primarily brought about by their low complexity and good edge-preservation properties. Despite this success, the different variants of the guided filter are unable to handle more aggressive filtering strengths leading to the manifestation of “detail halos”. At the same time, these existing filters perform poorly when the input and guide images have structural inconsistencies. In this paper, we demonstrate that these limitations are due to the guided filter operating as a variable-strength locally-isotropic filter that, in effect, acts as a weak anisotropic filter on the image. Our analysis shows that this behaviour stems from the use of unweighted averaging in the final steps of guided filter variants including the adaptive guided filter (AGF), weighted guided image filter (WGIF), and gradient-domain guided image filter (GGIF). We propose a novel filter, the Anisotropic Guided Filter (AnisGF), that utilises weighted averaging to achieve maximum diffusion while preserving strong edges in the image. The proposed weights are optimised based on the local neighbourhood variances to achieve strong anisotropic filtering while preserving the low computational cost of the original guided filter. Synthetic tests show that the proposed method addresses the presence of detail halos and the handling of inconsistent structures found in previous variants of the guided filter. Furthermore, experiments in scale-aware filtering, detail enhancement, texture removal, and chroma upsampling demonstrate the improvements brought about by the technique.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
danielbbbb发布了新的文献求助10
1秒前
研友_VZG7GZ应助包容新蕾采纳,获得10
1秒前
Peyton Why完成签到,获得积分10
3秒前
3秒前
4秒前
脑洞疼应助Shutai采纳,获得10
4秒前
阔达的访风应助张磊采纳,获得30
4秒前
三重根发布了新的文献求助10
4秒前
5秒前
Hello应助董小董采纳,获得10
6秒前
sk夏冰发布了新的文献求助10
6秒前
6秒前
6秒前
8秒前
danielbbbb完成签到,获得积分10
9秒前
Lucas应助hihi采纳,获得10
10秒前
熊永龙完成签到,获得积分20
11秒前
海绵宝宝发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
大方颦发布了新的文献求助10
11秒前
11秒前
12秒前
Ranch0完成签到,获得积分10
13秒前
勤恳的红酒完成签到,获得积分10
13秒前
13秒前
15秒前
smy发布了新的文献求助10
15秒前
16秒前
科目三应助纪震宇采纳,获得10
17秒前
17秒前
锖青发布了新的文献求助10
17秒前
搜集达人应助大方颦采纳,获得10
17秒前
steforeca发布了新的文献求助10
18秒前
19秒前
19秒前
充电宝应助幽默的觅山采纳,获得10
19秒前
gfqdts66发布了新的文献求助10
20秒前
20秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3247541
求助须知:如何正确求助?哪些是违规求助? 2890899
关于积分的说明 8264908
捐赠科研通 2559161
什么是DOI,文献DOI怎么找? 1387839
科研通“疑难数据库(出版商)”最低求助积分说明 650658
邀请新用户注册赠送积分活动 627438