亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving spherical k-means for document clustering: Fast initialization, sparse centroid projection, and efficient cluster labeling

初始化 质心 可解释性 聚类分析 计算机科学 星团(航天器) 数据挖掘 k均值聚类 模式识别(心理学) 文档聚类 高维数据聚类 人工智能 程序设计语言
作者
Hyun‐Joong Kim,Han‐Kyul Kim,Sungzoon Cho
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:150: 113288-113288 被引量:35
标识
DOI:10.1016/j.eswa.2020.113288
摘要

Due to its simplicity and intuitive interpretability, spherical k-means is often used for clustering a large number of documents. However, there exist a number of drawbacks that need to be addressed for much effective document clustering. Without well-dispersed initial points, spherical k-means fails to converge quickly, which is critical for clustering a large number of documents. Furthermore, its dense centroid vectors needlessly incorporate the impact of infrequent and less-informative words, thereby distorting the distance calculation between the document vectors. In this paper, we propose practical improvements on spherical k-means to overcome these issues during document clustering. Our proposed initialization method not only guarantees dispersed initial points, but is also up to 1000 times faster than previously well-known initialization method such as k-means++. Furthermore, we enforce sparsity on the centroid vectors by using a data-driven threshold that is capable of dynamically adjusting its value depending on the clusters. Additionally, we propose an unsupervised cluster labeling method that effectively extracts meaningful keywords to describe each cluster. We have tested our improvements on seven different text datasets that include both new and publicly available datasets. Based on our experiments on these datasets, we have found that our proposed improvements successfully overcome the drawbacks of spherical k-means in significantly reduced computation time. Furthermore, we have qualitatively verified the performance of the proposed cluster labeling method by extracting descriptive keywords of the clusters from these datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助王QQ采纳,获得10
3秒前
4秒前
9秒前
13秒前
18秒前
23秒前
不期而遇完成签到 ,获得积分10
28秒前
30秒前
hhh123完成签到,获得积分10
32秒前
樱丸小桃子完成签到,获得积分10
34秒前
白华苍松发布了新的文献求助10
34秒前
36秒前
36秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
嘚嘚完成签到,获得积分10
40秒前
终于会看论文了完成签到,获得积分10
44秒前
1分钟前
冷酷傲易完成签到,获得积分10
1分钟前
甜瓜发布了新的文献求助10
1分钟前
1分钟前
1分钟前
白华苍松发布了新的文献求助10
1分钟前
黯然完成签到 ,获得积分10
1分钟前
科研通AI2S应助嘚嘚采纳,获得10
1分钟前
1分钟前
cbt512133发布了新的文献求助10
1分钟前
1分钟前
大聪明完成签到,获得积分10
1分钟前
Epiphany发布了新的文献求助10
1分钟前
大个应助cbt512133采纳,获得10
1分钟前
乐乐应助SCU夏天采纳,获得10
1分钟前
丘比特应助捏个小雪团采纳,获得10
2分钟前
Epiphany完成签到,获得积分10
2分钟前
浩浩完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
SCU夏天完成签到,获得积分10
2分钟前
cbt512133完成签到,获得积分20
2分钟前
2分钟前
2分钟前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
O-carboxymethyl chitosan in biomedicine: A review 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330358
求助须知:如何正确求助?哪些是违规求助? 2959988
关于积分的说明 8597988
捐赠科研通 2638593
什么是DOI,文献DOI怎么找? 1444464
科研通“疑难数据库(出版商)”最低求助积分说明 669106
邀请新用户注册赠送积分活动 656727