Automatic Polyp Recognition in Colonoscopy Images Using Deep Learning and Two-Stage Pyramidal Feature Prediction

卷积神经网络 人工智能 计算机科学 特征(语言学) 模式识别(心理学) 分割 深度学习 阶段(地层学) 特征提取 过度拟合 过程(计算) 图像分割 语义学(计算机科学) 构造(python库) 人工神经网络 古生物学 哲学 语言学 生物 操作系统 程序设计语言
作者
Xiao Jia,Xiaochun Mai,Yi Cui,Yixuan Yuan,Xiaohan Xing,Hyunseok Seo,Lei Xing,Max Q.‐H. Meng
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:73
标识
DOI:10.1109/tase.2020.2964827
摘要

Polyp recognition in colonoscopy images is crucial for early colorectal cancer detection and treatment. However, the current manual review requires undivided concentration of the gastroenterologist and is prone to diagnostic errors. In this article, we present an effective, two-stage approach called PLPNet, where the abbreviation “PLP” stands for the word “polyp,” for automated pixel-accurate polyp recognition in colonoscopy images using very deep convolutional neural networks (CNNs). Compared to hand-engineered approaches and previous neural network architectures, our PLPNet model improves recognition accuracy by adding a polyp proposal stage that predicts the location box with polyp presence. Several schemes are proposed to ensure the model's performance. First of all, we construct a polyp proposal stage as an extension of the faster R-CNN, which performs as a region-level polyp detector to recognize the lesion area as a whole and constitutes stage I of PLPNet. Second, stageII of PLPNet is built in a fully convolutional fashion for pixelwise segmentation. We define a feature sharing strategy to transfer the learned semantics of polyp proposals to the segmentation task of stage II, which is proven to be highly capable of guiding the learning process and improve recognition accuracy. Additionally, we design skip schemes to enrich the feature scales and thus allow the model to generate detailed segmentation predictions. For accurate recognition, the advanced residual nets and feature pyramids are adopted to seek deeper and richer semantics at all network levels. Finally, we construct a two-stage framework for training and run our model convolutionally via a single-stream network at inference time to efficiently output the polyp mask. Experimental results on public data sets of GIANA Challenge demonstrate the accuracy gains of our approach, which surpasses previous state-of-the-art methods on the polyp segmentation task (74.7 Jaccard Index) and establishes new top results in the polyp localization challenge (81.7 recall).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
和谐的芷天完成签到,获得积分10
刚刚
无际的星空下完成签到,获得积分10
刚刚
sunrise完成签到,获得积分10
刚刚
伶俐的平蓝完成签到,获得积分10
刚刚
YW发布了新的文献求助10
刚刚
长情绿凝完成签到,获得积分10
1秒前
喂_你好发布了新的文献求助10
1秒前
1秒前
平淡纸飞机完成签到 ,获得积分10
1秒前
1秒前
洋洋爱吃枣完成签到 ,获得积分10
1秒前
务实天德完成签到,获得积分10
2秒前
3秒前
3秒前
脑洞疼应助mqq采纳,获得10
4秒前
yulong发布了新的文献求助10
4秒前
sangxue完成签到 ,获得积分10
4秒前
沐橘发布了新的文献求助10
4秒前
ziger完成签到,获得积分10
5秒前
淡定舞仙完成签到,获得积分10
5秒前
MORNING完成签到,获得积分10
6秒前
百合子完成签到,获得积分10
6秒前
迅速哈密瓜完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
7秒前
007完成签到,获得积分10
7秒前
小王完成签到,获得积分10
8秒前
ironsilica发布了新的文献求助10
8秒前
李爱国应助xlp采纳,获得10
8秒前
pipi完成签到,获得积分20
9秒前
淡定舞仙发布了新的文献求助10
9秒前
9秒前
10秒前
三六九完成签到,获得积分10
10秒前
emon完成签到 ,获得积分20
10秒前
10秒前
11秒前
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953608
求助须知:如何正确求助?哪些是违规求助? 3499327
关于积分的说明 11094832
捐赠科研通 3229935
什么是DOI,文献DOI怎么找? 1785767
邀请新用户注册赠送积分活动 869499
科研通“疑难数据库(出版商)”最低求助积分说明 801478