Automatic Polyp Recognition in Colonoscopy Images Using Deep Learning and Two-Stage Pyramidal Feature Prediction

卷积神经网络 人工智能 计算机科学 特征(语言学) 模式识别(心理学) 分割 深度学习 阶段(地层学) 特征提取 过度拟合 过程(计算) 图像分割 语义学(计算机科学) 构造(python库) 人工神经网络 古生物学 哲学 操作系统 生物 程序设计语言 语言学
作者
Xiao Jia,Xiaochun Mai,Yi Cui,Yixuan Yuan,Xiaohan Xing,Hyunseok Seo,Lei Xing,Max Q.‐H. Meng
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:73
标识
DOI:10.1109/tase.2020.2964827
摘要

Polyp recognition in colonoscopy images is crucial for early colorectal cancer detection and treatment. However, the current manual review requires undivided concentration of the gastroenterologist and is prone to diagnostic errors. In this article, we present an effective, two-stage approach called PLPNet, where the abbreviation “PLP” stands for the word “polyp,” for automated pixel-accurate polyp recognition in colonoscopy images using very deep convolutional neural networks (CNNs). Compared to hand-engineered approaches and previous neural network architectures, our PLPNet model improves recognition accuracy by adding a polyp proposal stage that predicts the location box with polyp presence. Several schemes are proposed to ensure the model's performance. First of all, we construct a polyp proposal stage as an extension of the faster R-CNN, which performs as a region-level polyp detector to recognize the lesion area as a whole and constitutes stage I of PLPNet. Second, stageII of PLPNet is built in a fully convolutional fashion for pixelwise segmentation. We define a feature sharing strategy to transfer the learned semantics of polyp proposals to the segmentation task of stage II, which is proven to be highly capable of guiding the learning process and improve recognition accuracy. Additionally, we design skip schemes to enrich the feature scales and thus allow the model to generate detailed segmentation predictions. For accurate recognition, the advanced residual nets and feature pyramids are adopted to seek deeper and richer semantics at all network levels. Finally, we construct a two-stage framework for training and run our model convolutionally via a single-stream network at inference time to efficiently output the polyp mask. Experimental results on public data sets of GIANA Challenge demonstrate the accuracy gains of our approach, which surpasses previous state-of-the-art methods on the polyp segmentation task (74.7 Jaccard Index) and establishes new top results in the polyp localization challenge (81.7 recall).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HuFan1201完成签到 ,获得积分10
刚刚
亚迪完成签到,获得积分10
刚刚
刚刚
刚刚
完美世界应助空曲采纳,获得10
1秒前
花开半夏完成签到,获得积分10
1秒前
shen_ting发布了新的文献求助30
3秒前
尤一一发布了新的文献求助10
3秒前
丘比特应助稳重的若雁采纳,获得10
3秒前
轻松元绿完成签到 ,获得积分10
4秒前
4秒前
5秒前
5秒前
小马甲应助安然采纳,获得10
5秒前
6秒前
6秒前
超级大饼完成签到,获得积分10
7秒前
玩命的千万完成签到,获得积分10
7秒前
7秒前
Orange应助shen_ting采纳,获得30
7秒前
Daisy完成签到,获得积分10
7秒前
刘兴发布了新的文献求助10
7秒前
失忆的ivy发布了新的文献求助10
9秒前
9秒前
梨花雨凉完成签到 ,获得积分10
10秒前
10秒前
蒲婉秋发布了新的文献求助10
10秒前
甜甜语薇发布了新的文献求助10
10秒前
111发布了新的文献求助10
11秒前
青城昊发布了新的文献求助10
11秒前
活力翼完成签到 ,获得积分10
11秒前
12秒前
Hollen完成签到 ,获得积分10
12秒前
完美世界应助一俚采纳,获得10
13秒前
13秒前
huzj发布了新的文献求助10
13秒前
饺子生面包完成签到 ,获得积分10
14秒前
14秒前
汤鱼完成签到 ,获得积分10
15秒前
15秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147764
求助须知:如何正确求助?哪些是违规求助? 2798817
关于积分的说明 7831609
捐赠科研通 2455685
什么是DOI,文献DOI怎么找? 1306889
科研通“疑难数据库(出版商)”最低求助积分说明 627943
版权声明 601587