Automatic Polyp Recognition in Colonoscopy Images Using Deep Learning and Two-Stage Pyramidal Feature Prediction

卷积神经网络 人工智能 计算机科学 特征(语言学) 模式识别(心理学) 分割 深度学习 阶段(地层学) 特征提取 过度拟合 过程(计算) 图像分割 语义学(计算机科学) 构造(python库) 人工神经网络 古生物学 哲学 操作系统 生物 程序设计语言 语言学
作者
Xiao Jia,Xiaochun Mai,Yi Cui,Yixuan Yuan,Xiaohan Xing,Hyunseok Seo,Lei Xing,Max Q.‐H. Meng
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:80
标识
DOI:10.1109/tase.2020.2964827
摘要

Polyp recognition in colonoscopy images is crucial for early colorectal cancer detection and treatment. However, the current manual review requires undivided concentration of the gastroenterologist and is prone to diagnostic errors. In this article, we present an effective, two-stage approach called PLPNet, where the abbreviation “PLP” stands for the word “polyp,” for automated pixel-accurate polyp recognition in colonoscopy images using very deep convolutional neural networks (CNNs). Compared to hand-engineered approaches and previous neural network architectures, our PLPNet model improves recognition accuracy by adding a polyp proposal stage that predicts the location box with polyp presence. Several schemes are proposed to ensure the model's performance. First of all, we construct a polyp proposal stage as an extension of the faster R-CNN, which performs as a region-level polyp detector to recognize the lesion area as a whole and constitutes stage I of PLPNet. Second, stageII of PLPNet is built in a fully convolutional fashion for pixelwise segmentation. We define a feature sharing strategy to transfer the learned semantics of polyp proposals to the segmentation task of stage II, which is proven to be highly capable of guiding the learning process and improve recognition accuracy. Additionally, we design skip schemes to enrich the feature scales and thus allow the model to generate detailed segmentation predictions. For accurate recognition, the advanced residual nets and feature pyramids are adopted to seek deeper and richer semantics at all network levels. Finally, we construct a two-stage framework for training and run our model convolutionally via a single-stream network at inference time to efficiently output the polyp mask. Experimental results on public data sets of GIANA Challenge demonstrate the accuracy gains of our approach, which surpasses previous state-of-the-art methods on the polyp segmentation task (74.7 Jaccard Index) and establishes new top results in the polyp localization challenge (81.7 recall).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
铮铮铁骨发布了新的文献求助10
2秒前
我是老大应助温柔书双采纳,获得10
2秒前
5秒前
顾矜应助可乐采纳,获得10
5秒前
chlc6973完成签到,获得积分10
5秒前
6秒前
6秒前
7秒前
sunny完成签到,获得积分10
8秒前
mini昕发布了新的文献求助10
12秒前
Aegean发布了新的文献求助10
12秒前
banana发布了新的文献求助10
13秒前
Silvia发布了新的文献求助10
13秒前
13秒前
xiong xiong发布了新的文献求助30
14秒前
快乐的薯片完成签到,获得积分10
17秒前
脑洞疼应助TvTiing采纳,获得10
18秒前
20秒前
creepppp发布了新的文献求助10
20秒前
21秒前
含蓄的白安完成签到,获得积分10
21秒前
小徐同志完成签到,获得积分10
22秒前
22秒前
23秒前
halo发布了新的文献求助10
25秒前
Andy完成签到,获得积分10
25秒前
丘比特应助地表飞猪采纳,获得10
25秒前
26秒前
十八完成签到,获得积分10
27秒前
Hello应助张子捷采纳,获得10
27秒前
28秒前
程意善发布了新的文献求助10
28秒前
29秒前
29秒前
29秒前
yangmo完成签到,获得积分10
30秒前
bear完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4924906
求助须知:如何正确求助?哪些是违规求助? 4195065
关于积分的说明 13030178
捐赠科研通 3966775
什么是DOI,文献DOI怎么找? 2174275
邀请新用户注册赠送积分活动 1191665
关于科研通互助平台的介绍 1101154