清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Three-way formal concept clustering technique for matrix completion in recommender system

推荐系统 计算机科学 矩阵完成 矩阵分解 协同过滤 聚类分析 基质(化学分析) 稀疏矩阵 数据挖掘 情报检索 矩阵表示法 代表(政治) 算法 人工智能 特征向量 物理 材料科学 化学 有机化学 量子力学 政治 政治学 法学 复合材料 群(周期表) 高斯分布
作者
Chemmalar Selvi G.,G. Lakshmi Priya
出处
期刊:International Journal of Pervasive Computing and Communications [Emerald Publishing Limited]
卷期号:17 (2): 167-183 被引量:5
标识
DOI:10.1108/ijpcc-07-2019-0055
摘要

Purpose In today’s world, the recommender systems are very valuable systems for the online users, as the World Wide Web is loaded with plenty of available information causing the online users to spend more time and money. The recommender systems suggest some possible and relevant recommendation to the online users by applying the recommendation filtering techniques to the available source of information. The recommendation filtering techniques take the input data denoted as the matrix representation which is generally very sparse and high dimensional data in nature. Hence, the sparse data matrix is completed by filling the unknown or missing entries by using many matrix completion techniques. One of the most popular techniques used is the matrix factorization (MF) which aims to decompose the sparse data matrix into two new and small dimensional data matrix and whose dot product completes the matrix by filling the logical values. However, the MF technique failed to retain the loss of original information when it tried to decompose the matrix, and the error rate is relatively high which clearly shows the loss of such valuable information. Design/methodology/approach To alleviate the problem of data loss and data sparsity, the new algorithm from formal concept analysis (FCA), a mathematical model, is proposed for matrix completion which aims at filling the unknown or missing entries without loss of valuable information to a greater extent. The proposed matrix completion algorithm uses the clustering technique where the users who have commonly rated the items and have not commonly rated the items are captured into two classes. The matrix completion algorithm fills the mean cluster value of the unknown entries which well completes the matrix without actually decomposing the matrix. Findings The experiment was conducted on the available public data set, MovieLens, whose result shows the prediction error rate is minimal, and the comparison with the existing algorithms is also studied. Thus, the application of FCA in recommender systems proves minimum or no data loss and improvement in the prediction accuracy of rating score. Social implications The proposed matrix completion algorithm using FCA performs good recommendation which will be more useful for today’s online users in making decision with regard to the online purchasing of products. Originality/value This paper presents the new technique of matrix completion adopting the vital properties from FCA which is applied in the recommender systems. Hence, the proposed algorithm performs well when compared to other existing algorithms in terms of prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lezbj99完成签到,获得积分10
4秒前
彦子完成签到 ,获得积分10
17秒前
Spring完成签到,获得积分10
18秒前
coco完成签到 ,获得积分10
21秒前
Axs完成签到,获得积分10
28秒前
sswy完成签到 ,获得积分10
42秒前
xinjie完成签到,获得积分10
59秒前
1分钟前
小宇宙发布了新的文献求助10
1分钟前
tty应助耍酷平凡采纳,获得30
1分钟前
小宇宙完成签到,获得积分10
1分钟前
如泣草芥完成签到,获得积分0
1分钟前
111完成签到 ,获得积分10
2分钟前
桐桐应助科研通管家采纳,获得10
2分钟前
萝卜猪完成签到,获得积分10
2分钟前
jlwang完成签到,获得积分10
2分钟前
孙老师完成签到 ,获得积分10
3分钟前
hyxu678完成签到,获得积分10
3分钟前
lily完成签到 ,获得积分10
3分钟前
PeterLin完成签到,获得积分10
3分钟前
科研通AI5应助PeterLin采纳,获得30
3分钟前
追风少年完成签到 ,获得积分10
4分钟前
4分钟前
百里幻竹发布了新的文献求助10
4分钟前
一自文又欠完成签到 ,获得积分10
4分钟前
X519664508完成签到,获得积分0
4分钟前
刘刘完成签到 ,获得积分10
5分钟前
5分钟前
廖梦琪完成签到 ,获得积分10
5分钟前
chcmy完成签到 ,获得积分0
5分钟前
6分钟前
lanxinge完成签到 ,获得积分10
6分钟前
淡淡醉波wuliao完成签到 ,获得积分10
6分钟前
攀攀完成签到 ,获得积分10
6分钟前
woxinyouyou完成签到,获得积分0
6分钟前
LeoBigman完成签到 ,获得积分10
7分钟前
感动清炎发布了新的文献求助10
7分钟前
Ava应助科研通管家采纳,获得10
8分钟前
卡卡罗特先森完成签到 ,获得积分10
9分钟前
波西米亚完成签到,获得积分10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582701
求助须知:如何正确求助?哪些是违规求助? 4000325
关于积分的说明 12382353
捐赠科研通 3675425
什么是DOI,文献DOI怎么找? 2025834
邀请新用户注册赠送积分活动 1059487
科研通“疑难数据库(出版商)”最低求助积分说明 946158