Three-way formal concept clustering technique for matrix completion in recommender system

推荐系统 计算机科学 矩阵完成 矩阵分解 协同过滤 聚类分析 基质(化学分析) 稀疏矩阵 数据挖掘 情报检索 矩阵表示法 代表(政治) 算法 人工智能 群(周期表) 法学 材料科学 化学 有机化学 高斯分布 复合材料 特征向量 物理 政治 量子力学 政治学
作者
Chemmalar Selvi G.,G. Lakshmi Priya
出处
期刊:International Journal of Pervasive Computing and Communications [Emerald Publishing Limited]
卷期号:17 (2): 167-183 被引量:5
标识
DOI:10.1108/ijpcc-07-2019-0055
摘要

Purpose In today’s world, the recommender systems are very valuable systems for the online users, as the World Wide Web is loaded with plenty of available information causing the online users to spend more time and money. The recommender systems suggest some possible and relevant recommendation to the online users by applying the recommendation filtering techniques to the available source of information. The recommendation filtering techniques take the input data denoted as the matrix representation which is generally very sparse and high dimensional data in nature. Hence, the sparse data matrix is completed by filling the unknown or missing entries by using many matrix completion techniques. One of the most popular techniques used is the matrix factorization (MF) which aims to decompose the sparse data matrix into two new and small dimensional data matrix and whose dot product completes the matrix by filling the logical values. However, the MF technique failed to retain the loss of original information when it tried to decompose the matrix, and the error rate is relatively high which clearly shows the loss of such valuable information. Design/methodology/approach To alleviate the problem of data loss and data sparsity, the new algorithm from formal concept analysis (FCA), a mathematical model, is proposed for matrix completion which aims at filling the unknown or missing entries without loss of valuable information to a greater extent. The proposed matrix completion algorithm uses the clustering technique where the users who have commonly rated the items and have not commonly rated the items are captured into two classes. The matrix completion algorithm fills the mean cluster value of the unknown entries which well completes the matrix without actually decomposing the matrix. Findings The experiment was conducted on the available public data set, MovieLens, whose result shows the prediction error rate is minimal, and the comparison with the existing algorithms is also studied. Thus, the application of FCA in recommender systems proves minimum or no data loss and improvement in the prediction accuracy of rating score. Social implications The proposed matrix completion algorithm using FCA performs good recommendation which will be more useful for today’s online users in making decision with regard to the online purchasing of products. Originality/value This paper presents the new technique of matrix completion adopting the vital properties from FCA which is applied in the recommender systems. Hence, the proposed algorithm performs well when compared to other existing algorithms in terms of prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
xkk13完成签到,获得积分10
1秒前
2秒前
脑洞疼应助zp采纳,获得10
2秒前
3秒前
深情安青应助MYZ采纳,获得30
3秒前
3秒前
小巧灯泡发布了新的文献求助10
4秒前
SciGPT应助yy采纳,获得10
4秒前
lyymmm发布了新的文献求助10
5秒前
minisword发布了新的文献求助10
5秒前
领导范儿应助喜多采纳,获得10
5秒前
wzc发布了新的文献求助10
6秒前
6秒前
科研通AI2S应助li采纳,获得10
7秒前
7秒前
张津浩发布了新的文献求助10
8秒前
bulubulubiu完成签到,获得积分10
9秒前
10秒前
zp完成签到,获得积分20
10秒前
10秒前
11秒前
丘比特应助迟未瑾采纳,获得10
12秒前
大模型应助沐沐采纳,获得10
12秒前
早安发布了新的文献求助10
12秒前
12秒前
南北发布了新的文献求助200
12秒前
13秒前
疯狂的胡萝卜完成签到,获得积分10
14秒前
15秒前
wxyshare应助不安采文采纳,获得10
15秒前
科目三应助烟雨落金城采纳,获得10
15秒前
闪闪的YOSH完成签到,获得积分10
15秒前
16秒前
璃月品茶钟离完成签到,获得积分10
16秒前
隐形曼青应助liuze采纳,获得10
17秒前
喜多发布了新的文献求助10
17秒前
莫茹发布了新的文献求助10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 1200
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4943128
求助须知:如何正确求助?哪些是违规求助? 4208384
关于积分的说明 13082612
捐赠科研通 3987733
什么是DOI,文献DOI怎么找? 2183262
邀请新用户注册赠送积分活动 1198889
关于科研通互助平台的介绍 1111368