清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Three-way formal concept clustering technique for matrix completion in recommender system

推荐系统 计算机科学 矩阵完成 矩阵分解 协同过滤 聚类分析 基质(化学分析) 稀疏矩阵 数据挖掘 情报检索 矩阵表示法 代表(政治) 算法 人工智能 特征向量 物理 材料科学 化学 有机化学 量子力学 政治 政治学 法学 复合材料 群(周期表) 高斯分布
作者
Chemmalar Selvi G.,G. Lakshmi Priya
出处
期刊:International Journal of Pervasive Computing and Communications [Emerald (MCB UP)]
卷期号:17 (2): 167-183 被引量:5
标识
DOI:10.1108/ijpcc-07-2019-0055
摘要

Purpose In today’s world, the recommender systems are very valuable systems for the online users, as the World Wide Web is loaded with plenty of available information causing the online users to spend more time and money. The recommender systems suggest some possible and relevant recommendation to the online users by applying the recommendation filtering techniques to the available source of information. The recommendation filtering techniques take the input data denoted as the matrix representation which is generally very sparse and high dimensional data in nature. Hence, the sparse data matrix is completed by filling the unknown or missing entries by using many matrix completion techniques. One of the most popular techniques used is the matrix factorization (MF) which aims to decompose the sparse data matrix into two new and small dimensional data matrix and whose dot product completes the matrix by filling the logical values. However, the MF technique failed to retain the loss of original information when it tried to decompose the matrix, and the error rate is relatively high which clearly shows the loss of such valuable information. Design/methodology/approach To alleviate the problem of data loss and data sparsity, the new algorithm from formal concept analysis (FCA), a mathematical model, is proposed for matrix completion which aims at filling the unknown or missing entries without loss of valuable information to a greater extent. The proposed matrix completion algorithm uses the clustering technique where the users who have commonly rated the items and have not commonly rated the items are captured into two classes. The matrix completion algorithm fills the mean cluster value of the unknown entries which well completes the matrix without actually decomposing the matrix. Findings The experiment was conducted on the available public data set, MovieLens, whose result shows the prediction error rate is minimal, and the comparison with the existing algorithms is also studied. Thus, the application of FCA in recommender systems proves minimum or no data loss and improvement in the prediction accuracy of rating score. Social implications The proposed matrix completion algorithm using FCA performs good recommendation which will be more useful for today’s online users in making decision with regard to the online purchasing of products. Originality/value This paper presents the new technique of matrix completion adopting the vital properties from FCA which is applied in the recommender systems. Hence, the proposed algorithm performs well when compared to other existing algorithms in terms of prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孟寐以求完成签到 ,获得积分10
刚刚
淡淡菠萝完成签到 ,获得积分10
9秒前
24秒前
1分钟前
1分钟前
1分钟前
欢呼亦绿完成签到,获得积分10
1分钟前
1分钟前
小孙失策了完成签到 ,获得积分10
1分钟前
1分钟前
宇文雨文完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
LPPQBB应助科研通管家采纳,获得80
2分钟前
zizideng完成签到,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
披着羊皮的狼完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
随心所欲完成签到 ,获得积分10
3分钟前
4分钟前
nbtzy完成签到,获得积分10
4分钟前
4分钟前
4分钟前
宅心仁厚完成签到 ,获得积分10
4分钟前
4分钟前
精明寒松完成签到 ,获得积分10
4分钟前
半喇柯基发布了新的文献求助10
4分钟前
Gary完成签到 ,获得积分10
5分钟前
Demi_Ming完成签到,获得积分10
5分钟前
5分钟前
fhw完成签到 ,获得积分10
5分钟前
aero完成签到 ,获得积分10
5分钟前
6分钟前
SCH_zhu发布了新的文献求助10
6分钟前
SCH_zhu完成签到,获得积分10
6分钟前
Criminology34完成签到,获得积分0
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5303286
求助须知:如何正确求助?哪些是违规求助? 4450158
关于积分的说明 13849104
捐赠科研通 4336792
什么是DOI,文献DOI怎么找? 2381094
邀请新用户注册赠送积分活动 1376083
关于科研通互助平台的介绍 1342675