Three-way formal concept clustering technique for matrix completion in recommender system

推荐系统 计算机科学 矩阵完成 矩阵分解 协同过滤 聚类分析 基质(化学分析) 稀疏矩阵 数据挖掘 情报检索 矩阵表示法 代表(政治) 算法 人工智能 群(周期表) 法学 材料科学 化学 有机化学 高斯分布 复合材料 特征向量 物理 政治 量子力学 政治学
作者
Chemmalar Selvi G.,G. Lakshmi Priya
出处
期刊:International Journal of Pervasive Computing and Communications [Emerald Publishing Limited]
卷期号:17 (2): 167-183 被引量:5
标识
DOI:10.1108/ijpcc-07-2019-0055
摘要

Purpose In today’s world, the recommender systems are very valuable systems for the online users, as the World Wide Web is loaded with plenty of available information causing the online users to spend more time and money. The recommender systems suggest some possible and relevant recommendation to the online users by applying the recommendation filtering techniques to the available source of information. The recommendation filtering techniques take the input data denoted as the matrix representation which is generally very sparse and high dimensional data in nature. Hence, the sparse data matrix is completed by filling the unknown or missing entries by using many matrix completion techniques. One of the most popular techniques used is the matrix factorization (MF) which aims to decompose the sparse data matrix into two new and small dimensional data matrix and whose dot product completes the matrix by filling the logical values. However, the MF technique failed to retain the loss of original information when it tried to decompose the matrix, and the error rate is relatively high which clearly shows the loss of such valuable information. Design/methodology/approach To alleviate the problem of data loss and data sparsity, the new algorithm from formal concept analysis (FCA), a mathematical model, is proposed for matrix completion which aims at filling the unknown or missing entries without loss of valuable information to a greater extent. The proposed matrix completion algorithm uses the clustering technique where the users who have commonly rated the items and have not commonly rated the items are captured into two classes. The matrix completion algorithm fills the mean cluster value of the unknown entries which well completes the matrix without actually decomposing the matrix. Findings The experiment was conducted on the available public data set, MovieLens, whose result shows the prediction error rate is minimal, and the comparison with the existing algorithms is also studied. Thus, the application of FCA in recommender systems proves minimum or no data loss and improvement in the prediction accuracy of rating score. Social implications The proposed matrix completion algorithm using FCA performs good recommendation which will be more useful for today’s online users in making decision with regard to the online purchasing of products. Originality/value This paper presents the new technique of matrix completion adopting the vital properties from FCA which is applied in the recommender systems. Hence, the proposed algorithm performs well when compared to other existing algorithms in terms of prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WAN发布了新的文献求助30
1秒前
Hello应助61采纳,获得10
1秒前
蔚欢发布了新的文献求助10
2秒前
嗯哼发布了新的文献求助10
2秒前
科目三应助科研通管家采纳,获得10
4秒前
hamster完成签到,获得积分10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得20
5秒前
科研通AI2S应助科研通管家采纳,获得30
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
7秒前
所所应助清新的问枫采纳,获得10
7秒前
9秒前
9秒前
蔓越莓蛋糕应助嗯哼采纳,获得10
10秒前
大个应助嗯哼采纳,获得10
10秒前
笑点低的沛蓝完成签到,获得积分10
10秒前
WAN完成签到,获得积分10
11秒前
humorr完成签到,获得积分10
11秒前
子非鱼完成签到,获得积分10
11秒前
wqc2060完成签到,获得积分10
11秒前
zhoull完成签到,获得积分10
12秒前
hhyy发布了新的文献求助30
13秒前
13秒前
zhoull发布了新的文献求助10
14秒前
17秒前
19秒前
wennn发布了新的文献求助10
19秒前
22秒前
22秒前
bkagyin应助HKY采纳,获得10
23秒前
23秒前
wanci应助茶弥采纳,获得10
24秒前
乔乔兔应助loong采纳,获得10
24秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962605
求助须知:如何正确求助?哪些是违规求助? 3508565
关于积分的说明 11141892
捐赠科研通 3241353
什么是DOI,文献DOI怎么找? 1791527
邀请新用户注册赠送积分活动 872888
科研通“疑难数据库(出版商)”最低求助积分说明 803501