Creating Artificial Images for Radiology Applications Using Generative Adversarial Networks (GANs) – A Systematic Review

计算机科学 人工智能 深度学习 领域(数学) 生成对抗网络 模式 医学物理学 生成语法 系统回顾 分割 对抗制 放射科 机器学习 梅德林 医学 社会科学 数学 社会学 法学 纯数学 政治学
作者
Vera Sorin,Yiftach Barash,Eli Konen,Eyal Klang
出处
期刊:Academic Radiology [Elsevier]
卷期号:27 (8): 1175-1185 被引量:151
标识
DOI:10.1016/j.acra.2019.12.024
摘要

Rationale and Objectives Generative adversarial networks (GANs) are deep learning models aimed at generating fake realistic looking images. These novel models made a great impact on the computer vision field. Our study aims to review the literature on GANs applications in radiology. Materials and Methods This systematic review followed the PRISMA guidelines. Electronic datasets were searched for studies describing applications of GANs in radiology. We included studies published up-to September 2019. Results Data were extracted from 33 studies published between 2017 and 2019. Eighteen studies focused on CT images generation, ten on MRI, three on PET/MRI and PET/CT, one on ultrasound and one on X-ray. Applications in radiology included image reconstruction and denoising for dose and scan time reduction (fourteen studies), data augmentation (six studies), transfer between modalities (eight studies) and image segmentation (five studies). All studies reported that generated images improved the performance of the developed algorithms. Conclusion GANs are increasingly studied for various radiology applications. They enable the creation of new data, which can be used to improve clinical care, education and research. Generative adversarial networks (GANs) are deep learning models aimed at generating fake realistic looking images. These novel models made a great impact on the computer vision field. Our study aims to review the literature on GANs applications in radiology. This systematic review followed the PRISMA guidelines. Electronic datasets were searched for studies describing applications of GANs in radiology. We included studies published up-to September 2019. Data were extracted from 33 studies published between 2017 and 2019. Eighteen studies focused on CT images generation, ten on MRI, three on PET/MRI and PET/CT, one on ultrasound and one on X-ray. Applications in radiology included image reconstruction and denoising for dose and scan time reduction (fourteen studies), data augmentation (six studies), transfer between modalities (eight studies) and image segmentation (five studies). All studies reported that generated images improved the performance of the developed algorithms. GANs are increasingly studied for various radiology applications. They enable the creation of new data, which can be used to improve clinical care, education and research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咻咻应助科研通管家采纳,获得20
刚刚
有思想完成签到,获得积分10
1秒前
Hayat发布了新的文献求助10
5秒前
9秒前
9秒前
11秒前
开心子骞发布了新的文献求助20
11秒前
Nyxia完成签到,获得积分10
12秒前
从别后忆相逢完成签到 ,获得积分10
12秒前
123完成签到,获得积分20
12秒前
13秒前
congjia完成签到,获得积分10
14秒前
爱科研的小常完成签到,获得积分10
14秒前
16秒前
研友_VZG7GZ应助豆豆欢欢乐采纳,获得10
16秒前
如你所liao发布了新的文献求助10
17秒前
不会飞的派蒙完成签到 ,获得积分10
17秒前
17秒前
18秒前
liuchenyang发布了新的文献求助10
20秒前
一叶舟完成签到 ,获得积分10
21秒前
22秒前
Fluoxetine发布了新的文献求助10
24秒前
峰宝宝发布了新的文献求助10
28秒前
咕咕完成签到,获得积分10
29秒前
322628完成签到,获得积分10
30秒前
32秒前
Fluoxetine完成签到,获得积分10
32秒前
高大尔槐完成签到,获得积分20
33秒前
jervine发布了新的文献求助10
34秒前
34秒前
yj发布了新的文献求助10
35秒前
曾曾完成签到,获得积分10
36秒前
刻苦的涫发布了新的文献求助10
38秒前
思源应助afrex采纳,获得10
39秒前
39秒前
共享精神应助高大尔槐采纳,获得10
39秒前
脑洞疼应助菜菜采纳,获得10
40秒前
大个应助Hayat采纳,获得10
42秒前
sherman发布了新的文献求助10
44秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262769
求助须知:如何正确求助?哪些是违规求助? 2903373
关于积分的说明 8325014
捐赠科研通 2573399
什么是DOI,文献DOI怎么找? 1398263
科研通“疑难数据库(出版商)”最低求助积分说明 654051
邀请新用户注册赠送积分活动 632668