Attention-Diffusion-Bilinear Neural Network for Brain Network Analysis

磁共振弥散成像 计算机科学 节点(物理) 双线性插值 图形 人工神经网络 人工智能 光学(聚焦) 代表(政治) 模式识别(心理学) 理论计算机科学 磁共振成像 计算机视觉 工程类 放射科 政治 法学 医学 结构工程 政治学 物理 光学
作者
Jiashuang Huang,Luping Zhou,Lei Wang,Daoqiang Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (7): 2541-2552 被引量:67
标识
DOI:10.1109/tmi.2020.2973650
摘要

Brain network provides essential insights in diagnosing many brain disorders. Integrative analysis of multiple types of connectivity, e.g, functional connectivity (FC) and structural connectivity (SC), can take advantage of their complementary information and therefore may help to identify patients. However, traditional brain network methods usually focus on either FC or SC for describing node interactions and only consider the interaction between paired network nodes. To tackle this problem, in this paper, we propose an Attention-Diffusion-Bilinear Neural Network (ADB-NN) framework for brain network analysis, which is trained in an end-to-end manner. The proposed network seamlessly couples FC and SC to learn wider node interactions and generates a joint representation of FC and SC for diagnosis. Specifically, a brain network (graph) is first defined, where each node corresponding to a brain region is governed by the features of brain activities (i.e., FC) extracted from functional magnetic resonance imaging (fMRI), and the presence of edges is determined by neural fiber physical connections (i.e., SC) extracted from Diffusion Tensor Imaging (DTI). Based on this graph, we train two Attention-Diffusion-Bilinear (ADB) modules jointly. In each module, an attention model is utilized to automatically learn the strength of node interactions. This information further guides a diffusion process that generates new node representations by considering the influence from other nodes as well. After that, the second-order statistics of these node representations are extracted by bilinear pooling to form connectivity-based features for disease prediction. The two ADB modules correspond to the one-step and two-step diffusion, respectively. Experiments on a real epilepsy dataset demonstrate the effectiveness and advantages of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lg20010419完成签到,获得积分10
1秒前
1秒前
1秒前
Zer完成签到,获得积分10
3秒前
orixero应助Smile_采纳,获得10
3秒前
松子的ee完成签到 ,获得积分10
4秒前
4秒前
6秒前
7秒前
7秒前
FashionBoy应助惠葶采纳,获得10
8秒前
9秒前
微凉之夏发布了新的文献求助10
9秒前
学分完成签到 ,获得积分10
12秒前
12秒前
夏天来了发布了新的文献求助30
13秒前
14秒前
lyoncr完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
林夕发布了新的文献求助20
16秒前
共享精神应助Hoshi采纳,获得10
17秒前
踏实的煎饼完成签到,获得积分20
17秒前
Jasper应助Adrenaline采纳,获得10
17秒前
Ge发布了新的文献求助10
18秒前
19秒前
小雪糕发布了新的文献求助10
19秒前
19秒前
looi发布了新的文献求助10
20秒前
兰晋彤发布了新的文献求助20
21秒前
Smile_发布了新的文献求助10
21秒前
汉堡包应助自由凌丝采纳,获得10
22秒前
张三发布了新的文献求助10
22秒前
林屿溪发布了新的文献求助10
22秒前
枳甜发布了新的文献求助10
25秒前
科研通AI5应助cxh采纳,获得10
27秒前
28秒前
doclarrin完成签到 ,获得积分10
28秒前
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3569308
求助须知:如何正确求助?哪些是违规求助? 3140626
关于积分的说明 9438650
捐赠科研通 2841729
什么是DOI,文献DOI怎么找? 1561819
邀请新用户注册赠送积分活动 730660
科研通“疑难数据库(出版商)”最低求助积分说明 718179