清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

FLOW-MAP: a graph-based, force-directed layout algorithm for trajectory mapping in single-cell time course datasets

计算机科学 质量细胞仪 图表布局 图形用户界面 算法 流程图 数据挖掘 流量(数学) 计算生物学 可视化 图形绘制 生物 数学 程序设计语言 生物化学 基因 表型 几何学
作者
Melissa E. Ko,Corey M. Williams,Kristen Fread,Sarah M. Goggin,Rohit S. Rustagi,Gabriela K. Fragiadakis,Garry P. Nolan,Eli R. Zunder
出处
期刊:Nature Protocols [Springer Nature]
卷期号:15 (2): 398-420 被引量:21
标识
DOI:10.1038/s41596-019-0246-3
摘要

High-dimensional single-cell technologies present new opportunities for biological discovery, but the complex nature of the resulting datasets makes it challenging to perform comprehensive analysis. One particular challenge is the analysis of single-cell time course datasets: how to identify unique cell populations and track how they change across time points. To facilitate this analysis, we developed FLOW-MAP, a graphical user interface (GUI)-based software tool that uses graph layout analysis with sequential time ordering to visualize cellular trajectories in high-dimensional single-cell datasets obtained from flow cytometry, mass cytometry or single-cell RNA sequencing (scRNAseq) experiments. Here we provide a detailed description of the FLOW-MAP algorithm and how to use the open-source R package FLOWMAPR via its GUI or with text-based commands. This approach can be applied to many dynamic processes, including in vitro stem cell differentiation, in vivo development, oncogenesis, the emergence of drug resistance and cell signaling dynamics. To demonstrate our approach, we perform a step-by-step analysis of a single-cell mass cytometry time course dataset from mouse embryonic stem cells differentiating into the three germ layers: endoderm, mesoderm and ectoderm. In addition, we demonstrate FLOW-MAP analysis of a previously published scRNAseq dataset. Using both synthetic and experimental datasets for comparison, we perform FLOW-MAP analysis side by side with other single-cell analysis methods, to illustrate when it is advantageous to use the FLOW-MAP approach. The protocol takes between 30 min and 1.5 h to complete.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
元宝麻麻发布了新的文献求助10
14秒前
SciGPT应助科研通管家采纳,获得10
15秒前
默默问芙完成签到,获得积分10
17秒前
俊逸的盛男完成签到 ,获得积分10
27秒前
SciGPT应助元宝麻麻采纳,获得10
37秒前
1分钟前
活力的妙之完成签到 ,获得积分10
1分钟前
zzgpku完成签到,获得积分0
1分钟前
懒得起名字完成签到 ,获得积分10
1分钟前
共享精神应助尊敬的凌晴采纳,获得10
1分钟前
sevenhill完成签到 ,获得积分0
1分钟前
浚稚完成签到 ,获得积分10
1分钟前
Upupgrowth完成签到 ,获得积分10
1分钟前
年轻千愁完成签到 ,获得积分10
1分钟前
1分钟前
Weilu完成签到 ,获得积分10
1分钟前
1分钟前
naki完成签到,获得积分10
1分钟前
HCCha完成签到,获得积分10
1分钟前
胡国伦完成签到 ,获得积分10
2分钟前
元宝麻麻完成签到,获得积分10
2分钟前
似水流年完成签到 ,获得积分10
2分钟前
今我来思完成签到 ,获得积分10
2分钟前
小蘑菇应助neptuniar采纳,获得10
3分钟前
甜美的觅荷完成签到,获得积分10
3分钟前
尊敬的凌晴完成签到 ,获得积分10
3分钟前
3分钟前
愤怒的念蕾完成签到,获得积分10
3分钟前
cgs完成签到 ,获得积分10
3分钟前
自由的雅旋完成签到 ,获得积分10
3分钟前
练得身形似鹤形完成签到 ,获得积分10
3分钟前
悠树里完成签到,获得积分10
4分钟前
gwbk完成签到,获得积分10
4分钟前
隐形曼青应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
neptuniar发布了新的文献求助10
4分钟前
雪花完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Terminologia Embryologica 500
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612005
求助须知:如何正确求助?哪些是违规求助? 4696171
关于积分的说明 14890481
捐赠科研通 4730707
什么是DOI,文献DOI怎么找? 2546088
邀请新用户注册赠送积分活动 1510419
关于科研通互助平台的介绍 1473299