FLOW-MAP: a graph-based, force-directed layout algorithm for trajectory mapping in single-cell time course datasets

计算机科学 质量细胞仪 图表布局 图形用户界面 算法 流程图 数据挖掘 流量(数学) 计算生物学 可视化 图形绘制 生物 数学 程序设计语言 生物化学 基因 表型 几何学
作者
Melissa E. Ko,Corey M. Williams,Kristen Fread,Sarah M. Goggin,Rohit S. Rustagi,Gabriela K. Fragiadakis,Garry P. Nolan,Eli R. Zunder
出处
期刊:Nature Protocols [Nature Portfolio]
卷期号:15 (2): 398-420 被引量:21
标识
DOI:10.1038/s41596-019-0246-3
摘要

High-dimensional single-cell technologies present new opportunities for biological discovery, but the complex nature of the resulting datasets makes it challenging to perform comprehensive analysis. One particular challenge is the analysis of single-cell time course datasets: how to identify unique cell populations and track how they change across time points. To facilitate this analysis, we developed FLOW-MAP, a graphical user interface (GUI)-based software tool that uses graph layout analysis with sequential time ordering to visualize cellular trajectories in high-dimensional single-cell datasets obtained from flow cytometry, mass cytometry or single-cell RNA sequencing (scRNAseq) experiments. Here we provide a detailed description of the FLOW-MAP algorithm and how to use the open-source R package FLOWMAPR via its GUI or with text-based commands. This approach can be applied to many dynamic processes, including in vitro stem cell differentiation, in vivo development, oncogenesis, the emergence of drug resistance and cell signaling dynamics. To demonstrate our approach, we perform a step-by-step analysis of a single-cell mass cytometry time course dataset from mouse embryonic stem cells differentiating into the three germ layers: endoderm, mesoderm and ectoderm. In addition, we demonstrate FLOW-MAP analysis of a previously published scRNAseq dataset. Using both synthetic and experimental datasets for comparison, we perform FLOW-MAP analysis side by side with other single-cell analysis methods, to illustrate when it is advantageous to use the FLOW-MAP approach. The protocol takes between 30 min and 1.5 h to complete.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助行走的车采纳,获得10
刚刚
aqqqwee完成签到,获得积分20
刚刚
1秒前
喻开山完成签到,获得积分10
1秒前
杰尼龟006发布了新的文献求助10
2秒前
2秒前
姜水完成签到,获得积分10
2秒前
个性惜蕊完成签到,获得积分10
2秒前
遐蝶完成签到,获得积分10
2秒前
嘻嘻叮完成签到,获得积分10
2秒前
2秒前
wangs完成签到,获得积分20
3秒前
曹静怡发布了新的文献求助30
3秒前
pillow完成签到,获得积分10
3秒前
lignin完成签到,获得积分10
3秒前
时光完成签到 ,获得积分10
4秒前
刘艺娜完成签到,获得积分10
4秒前
Zirong发布了新的文献求助10
4秒前
迷途的羔羊完成签到 ,获得积分10
4秒前
hino完成签到,获得积分10
5秒前
Ericliu完成签到,获得积分10
5秒前
6秒前
dididi完成签到,获得积分10
6秒前
Mrchen发布了新的文献求助10
6秒前
7秒前
依依完成签到,获得积分10
7秒前
Arizaq发布了新的文献求助10
8秒前
春花完成签到 ,获得积分10
8秒前
徐山淇完成签到,获得积分10
8秒前
9秒前
典雅的丹寒完成签到,获得积分10
9秒前
8R60d8应助含蓄的从菡采纳,获得10
10秒前
10秒前
pillow发布了新的文献求助10
10秒前
风吹草动玉米粒完成签到,获得积分10
10秒前
maorongfu456完成签到,获得积分10
10秒前
lyl完成签到,获得积分10
10秒前
小萌新发布了新的文献求助10
11秒前
11秒前
纯真冰露完成签到,获得积分10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950291
求助须知:如何正确求助?哪些是违规求助? 3495773
关于积分的说明 11078786
捐赠科研通 3226217
什么是DOI,文献DOI怎么找? 1783653
邀请新用户注册赠送积分活动 867728
科研通“疑难数据库(出版商)”最低求助积分说明 800904