Bio-Inspired Vibration Isolation: Methodology and Design

隔振 机制(生物学) 刚度 稳健性(进化) 顺应机制 振动 计算机科学 控制工程 仿生学 非线性系统 工程类 分离(微生物学) 控制理论(社会学) 结构工程 控制(管理) 人工智能 有限元法 基因 认识论 物理 生物化学 哲学 微生物学 生物 化学 量子力学
作者
Ge Yan,Hong‐Xiang Zou,Sen Wang,Lin‐Chuan Zhao,Zhiyuan Wu,Wenming Zhang
出处
期刊:Applied Mechanics Reviews [ASME International]
卷期号:73 (2) 被引量:129
标识
DOI:10.1115/1.4049946
摘要

Abstract Various bio-inspired vibration isolators have been emerged in recent decades and applied successfully in the protection of sensitive components, improvement of operating comfort, enhancement of control accuracy, etc. They are generally developed by exploiting favorable nonlinearities in biological structures. The main contribution of this work is to provide a comprehensive review of recent studies on the bio-inspired isolators. The methodology of bio-inspired vibration isolation is proposed from the perspective of mechanics based on the elemental theory and design principles. The key isolation mechanisms are classified into three categories according to different dominant forces: stiffness adjustment mechanism, auxiliary mass mechanism, and damping mechanism, respectively. Some representative designs, performance analyses, and practical applications of each type of bio-inspired isolators are also provided. In bio-inspired isolators with variable stiffness, the inherent structural performances can be adjusted to deal with variation in external load. The auxiliary mass mechanism utilizes nonlinear inertial effects to achieve ultralow frequency vibration isolation. Unique damping mechanism of bio-inspired structures is often studied to protect devices and equipment from impact loads. Bio-inspired vibration methods can also be applied in active/semi-active control systems with advantages of low energy consumption and high robustness. Finally, the review ends with conclusions, which highlight resolved and unresolved issues and provide a brief outlook on future perspectives. This review aims to give a comprehensive understanding of bio-inspired isolation mechanism. It also provides guidance on designing new bio-inspired isolators for improving their vibration isolation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
黑咚咚完成签到 ,获得积分10
刚刚
畅快的荟发布了新的文献求助10
1秒前
1秒前
二七完成签到 ,获得积分10
2秒前
2秒前
AaronW应助大林采纳,获得10
3秒前
小伙子发布了新的文献求助30
3秒前
4秒前
慕明花开完成签到,获得积分20
4秒前
周宸完成签到,获得积分10
4秒前
5秒前
www1234发布了新的文献求助10
5秒前
爱笑水壶完成签到,获得积分10
5秒前
iui飞关注了科研通微信公众号
6秒前
归诚发布了新的文献求助10
8秒前
cai完成签到,获得积分10
8秒前
9秒前
JamesTYD发布了新的文献求助20
9秒前
科研通AI2S应助redred采纳,获得10
10秒前
小北发布了新的文献求助10
10秒前
10秒前
11秒前
Jessie完成签到,获得积分10
12秒前
共享精神应助Cc采纳,获得10
12秒前
12秒前
沉默烨霖完成签到,获得积分10
13秒前
14秒前
思源应助舒适的平蓝采纳,获得10
15秒前
BaiX发布了新的文献求助10
16秒前
Dodobirdzhb发布了新的文献求助10
16秒前
沉默烨霖发布了新的文献求助10
17秒前
HEIKU应助不做花瓶好多年采纳,获得20
17秒前
17秒前
18秒前
小六六六发布了新的文献求助10
19秒前
Ava应助机灵胡萝卜采纳,获得10
19秒前
丽虹完成签到,获得积分10
19秒前
陈滚滚完成签到,获得积分10
20秒前
ddd完成签到,获得积分10
20秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160487
求助须知:如何正确求助?哪些是违规求助? 2811659
关于积分的说明 7892950
捐赠科研通 2470589
什么是DOI,文献DOI怎么找? 1315639
科研通“疑难数据库(出版商)”最低求助积分说明 630910
版权声明 602042