卤化物
异质结
钙钛矿(结构)
材料科学
化学物理
图层(电子)
磁滞
扩散过程
扩散阻挡层
纳米技术
光电子学
扩散
结晶学
化学
无机化学
凝聚态物理
物理
热力学
创新扩散
知识管理
计算机科学
作者
Akriti Akriti,Enzheng Shi,Stephen B. Shiring,Jiaqi Yang,Cindy L. Atencio-Martinez,Biao Yuan,Xiangchen Hu,Yao Gao,Blake P. Finkenauer,Alan J. Pistone,Yi Yu,Peilin Liao,Brett M. Savoie,Letian Dou
标识
DOI:10.1038/s41565-021-00848-w
摘要
Anionic diffusion in a soft crystal lattice of hybrid halide perovskites affects their stability, optoelectronic properties and the resulting device performance. The use of two-dimensional (2D) halide perovskites improves the chemical stability of perovskites and suppresses the intrinsic anionic diffusion in solid-state devices. Based on this strategy, devices with an enhanced stability and reduced hysteresis have been achieved. However, a fundamental understanding of the role of organic cations in inhibiting anionic diffusion across the perovskite–ligand interface is missing. Here we demonstrate the first quantitative investigation of the anionic interdiffusion across atomically flat 2D vertical heterojunctions. Interestingly, the halide diffusion does not follow the classical diffusion process. Instead, a ‘quantized’ layer-by-layer diffusion model is proposed to describe the behaviour of the anionic migration in 2D halide perovskites. Our results provide important insights into the mechanism of anionic diffusion in 2D perovskites and provide a new materials platform with an enhanced stability for heterostructure integration. The realization of atomically flat vertical 2D perovskite heterojunctions offers a novel materials platform that reveals the mechanism of anionic diffusion in 2D perovskites.
科研通智能强力驱动
Strongly Powered by AbleSci AI