汉密尔顿-雅各比-贝尔曼方程
计算机科学
强化学习
动态规划
趋同(经济学)
跟踪误差
跟踪(教育)
弹道
状态空间
实现(概率)
控制(管理)
人工智能
国家(计算机科学)
人工神经网络
控制器(灌溉)
控制理论(社会学)
马尔可夫决策过程
贝尔曼方程
最优控制
机器人
数学优化
任务(项目管理)
数学
算法
心理学
教育学
统计
物理
天文
经济
经济增长
作者
Xiaoyi Long,Zheng He,Zhongyuan Wang
出处
期刊:Complexity
[Hindawi Limited]
日期:2021-02-09
卷期号:2021: 1-7
被引量:4
摘要
This paper suggests an online solution for the optimal tracking control of robotic systems based on a single critic neural network (NN)-based reinforcement learning (RL) method. To this end, we rewrite the robotic system model as a state-space form, which will facilitate the realization of optimal tracking control synthesis. To maintain the tracking response, a steady-state control is designed, and then an adaptive optimal tracking control is used to ensure that the tracking error can achieve convergence in an optimal sense. To solve the obtained optimal control via the framework of adaptive dynamic programming (ADP), the command trajectory to be tracked and the modified tracking Hamilton-Jacobi-Bellman (HJB) are all formulated. An online RL algorithm is the developed to address the HJB equation using a critic NN with online learning algorithm. Simulation results are given to verify the effectiveness of the proposed method.
科研通智能强力驱动
Strongly Powered by AbleSci AI