乙烯醇
聚结(物理)
表面张力
聚合物
丙烯酸
粘弹性
材料科学
化学工程
肺表面活性物质
模数
高分子化学
复合材料
热力学
共聚物
天体生物学
物理
工程类
作者
Meifang Liu,Yueqing Zheng,Yiyang Liu,Zhanwen Zhang,Yuguang Wang,Jing Li,Qiang Chen,Jie Li,Yawen Huang,Qiang Yin
标识
DOI:10.1016/j.ijhydene.2019.11.129
摘要
Polymer shells, as the container of deuterium and tritium fuels, are indispensable parts for preparing the target in the inertial fusion experiments and the future inertial fusion energy plants. It is important to ensure the stability of the corresponding compound droplets, the precursor of these polymer shells. The selection of surfactants is crucial in the preparation of the compound droplets due to their important role on the stability of the compound droplets. In this paper, the effects of the concentrations of the poly (vinyl alcohol) (PVA) and the poly (acrylic acid) (PAA), and their molecular weights on the bulk and interfacial properties, as well as the relationship between the properties and the stability of the compound droplets were investigated. Moreover, the mechanisms of the PVA and the PAA preventing the coalescence and the rupture of the compound droplets were also discussed. Lower interfacial tension and higher bulk viscosity benefited reducing the risk of the rupture and the coalescence. The interfacial dilational viscoelasticity (elastic modulus, viscous modulus and phase angle) also showed an important influence on the rupture and the coalescence. This work provides a more comprehensive understanding of the coalescence and the rupture, and gives some practical advices on selecting optimal concentration of the surfactant and its molecular weight, benefiting the preparation of stable compound droplets.
科研通智能强力驱动
Strongly Powered by AbleSci AI