Preoperative prediction of tumour deposits in rectal cancer by an artificial neural network–based US radiomics model

医学 无线电技术 神经组阅片室 超声波 放射科 人工神经网络 机器学习 人工智能 磁共振成像 神经学 计算机科学 精神科
作者
Li‐Da Chen,Wei Li,Meng‐Fei Xian,Xin Zheng,Yuan Lin,Baoxian Liu,Manxia Lin,Xin Li,Yanling Zheng,Xiaoyan Xie,Ming‐De Lu,Ming Kuang,Jianbo Xu,Wei Wang
出处
期刊:European Radiology [Springer Nature]
卷期号:30 (4): 1969-1979 被引量:39
标识
DOI:10.1007/s00330-019-06558-1
摘要

To develop a machine learning–based ultrasound (US) radiomics model for predicting tumour deposits (TDs) preoperatively. From December 2015 to December 2017, 127 patients with rectal cancer were prospectively enrolled and divided into training and validation sets. Endorectal ultrasound (ERUS) and shear-wave elastography (SWE) examinations were conducted for each patient. A total of 4176 US radiomics features were extracted for each patient. After the reduction and selection of US radiomics features , a predictive model using an artificial neural network (ANN) was constructed in the training set. Furthermore, two models (one incorporating clinical information and one based on MRI radiomics) were developed. These models were validated by assessing their diagnostic performance and comparing the areas under the curve (AUCs) in the validation set. The training and validation sets included 29 (33.3%) and 11 (27.5%) patients with TDs, respectively. A US radiomics ANN model was constructed. The model for predicting TDs showed an accuracy of 75.0% in the validation cohort. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and AUC were 72.7%, 75.9%, 53.3%, 88.0% and 0.743, respectively. For the model incorporating clinical information, the AUC improved to 0.795. Although the AUC of the US radiomics model was improved compared with that of the MRI radiomics model (0.916 vs. 0.872) in the 90 patients with both ultrasound and MRI data (which included both the training and validation sets), the difference was nonsignificant (p = 0.384). US radiomics may be a potential model to accurately predict TDs before therapy. • We prospectively developed an artificial neural network model for predicting tumour deposits based on US radiomics that had an accuracy of 75.0%. • The area under the curve of the US radiomics model was improved than that of the MRI radiomics model (0.916 vs. 0.872), but the difference was not significant (p = 0.384). • The US radiomics–based model may potentially predict TDs accurately before therapy, but this model needs further validation with larger samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
布吉岛发布了新的文献求助10
1秒前
LLL完成签到,获得积分10
4秒前
辣个男子完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
Cassie应助keikeizi采纳,获得10
6秒前
熊熊完成签到 ,获得积分10
8秒前
lijinyu发布了新的文献求助10
10秒前
景__完成签到,获得积分10
10秒前
10秒前
Terry完成签到,获得积分10
11秒前
qlwko完成签到,获得积分10
11秒前
忠于人民忠于党完成签到,获得积分20
13秒前
君莫惜完成签到,获得积分10
15秒前
lcc应助牛牛采纳,获得10
16秒前
xuyun发布了新的文献求助10
16秒前
17秒前
17秒前
肖f驳回了李健应助
18秒前
lijinyu完成签到,获得积分10
18秒前
SciGPT应助keikeizi采纳,获得10
19秒前
司宁完成签到,获得积分10
19秒前
无心的怜烟完成签到,获得积分10
19秒前
20秒前
冬雪完成签到 ,获得积分10
20秒前
王111完成签到,获得积分10
20秒前
兴奋蓝完成签到,获得积分10
20秒前
22秒前
充电宝应助活力的泥猴桃采纳,获得10
24秒前
务实天德完成签到,获得积分10
26秒前
26秒前
26秒前
科研小白完成签到 ,获得积分10
30秒前
31秒前
天人完成签到 ,获得积分10
32秒前
柔弱的信封完成签到,获得积分10
34秒前
35秒前
墨竹发布了新的文献求助10
36秒前
迷惘墨香完成签到 ,获得积分10
36秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140361
求助须知:如何正确求助?哪些是违规求助? 2791116
关于积分的说明 7798129
捐赠科研通 2447583
什么是DOI,文献DOI怎么找? 1301980
科研通“疑难数据库(出版商)”最低求助积分说明 626354
版权声明 601194