亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Preoperative prediction of tumour deposits in rectal cancer by an artificial neural network–based US radiomics model

医学 无线电技术 神经组阅片室 超声波 放射科 人工神经网络 机器学习 人工智能 磁共振成像 神经学 计算机科学 精神科
作者
Li‐Da Chen,Wei Li,Meng‐Fei Xian,Xin Zheng,Yuan Lin,Baoxian Liu,Manxia Lin,Xin Li,Yanling Zheng,Xiaoyan Xie,Ming‐De Lu,Ming Kuang,Jianbo Xu,Wei Wang
出处
期刊:European Radiology [Springer Nature]
卷期号:30 (4): 1969-1979 被引量:39
标识
DOI:10.1007/s00330-019-06558-1
摘要

To develop a machine learning–based ultrasound (US) radiomics model for predicting tumour deposits (TDs) preoperatively. From December 2015 to December 2017, 127 patients with rectal cancer were prospectively enrolled and divided into training and validation sets. Endorectal ultrasound (ERUS) and shear-wave elastography (SWE) examinations were conducted for each patient. A total of 4176 US radiomics features were extracted for each patient. After the reduction and selection of US radiomics features , a predictive model using an artificial neural network (ANN) was constructed in the training set. Furthermore, two models (one incorporating clinical information and one based on MRI radiomics) were developed. These models were validated by assessing their diagnostic performance and comparing the areas under the curve (AUCs) in the validation set. The training and validation sets included 29 (33.3%) and 11 (27.5%) patients with TDs, respectively. A US radiomics ANN model was constructed. The model for predicting TDs showed an accuracy of 75.0% in the validation cohort. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and AUC were 72.7%, 75.9%, 53.3%, 88.0% and 0.743, respectively. For the model incorporating clinical information, the AUC improved to 0.795. Although the AUC of the US radiomics model was improved compared with that of the MRI radiomics model (0.916 vs. 0.872) in the 90 patients with both ultrasound and MRI data (which included both the training and validation sets), the difference was nonsignificant (p = 0.384). US radiomics may be a potential model to accurately predict TDs before therapy. • We prospectively developed an artificial neural network model for predicting tumour deposits based on US radiomics that had an accuracy of 75.0%. • The area under the curve of the US radiomics model was improved than that of the MRI radiomics model (0.916 vs. 0.872), but the difference was not significant (p = 0.384). • The US radiomics–based model may potentially predict TDs accurately before therapy, but this model needs further validation with larger samples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
6秒前
9秒前
39秒前
52秒前
55秒前
1分钟前
gexzygg应助科研通管家采纳,获得10
1分钟前
绵绵完成签到,获得积分10
1分钟前
1分钟前
2分钟前
忆茶戏完成签到 ,获得积分10
2分钟前
xingsixs完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
舒心糖豆发布了新的文献求助10
2分钟前
晨曦完成签到,获得积分10
2分钟前
2分钟前
Christina发布了新的文献求助10
2分钟前
odell完成签到,获得积分10
2分钟前
3分钟前
NattyPoe应助zz采纳,获得10
3分钟前
gexzygg应助科研通管家采纳,获得10
3分钟前
发文章应助科研通管家采纳,获得20
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
xiaolang2004完成签到,获得积分10
3分钟前
番茄鱼完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
wund完成签到,获得积分10
3分钟前
拼命毕业完成签到,获得积分10
3分钟前
3分钟前
4分钟前
fsznc1完成签到 ,获得积分0
4分钟前
ceeray23发布了新的文献求助20
4分钟前
shentaii完成签到,获得积分10
4分钟前
拼命毕业发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554838
求助须知:如何正确求助?哪些是违规求助? 4639397
关于积分的说明 14656191
捐赠科研通 4581355
什么是DOI,文献DOI怎么找? 2512711
邀请新用户注册赠送积分活动 1487466
关于科研通互助平台的介绍 1458378