Preoperative prediction of tumour deposits in rectal cancer by an artificial neural network–based US radiomics model

医学 无线电技术 神经组阅片室 超声波 放射科 人工神经网络 机器学习 人工智能 磁共振成像 神经学 计算机科学 精神科
作者
Li‐Da Chen,Wei Li,Meng‐Fei Xian,Xin Zheng,Yuan Lin,Baoxian Liu,Manxia Lin,Xin Li,Yanling Zheng,Xiaoyan Xie,Ming‐De Lu,Ming Kuang,Jianbo Xu,Wei Wang
出处
期刊:European Radiology [Springer Nature]
卷期号:30 (4): 1969-1979 被引量:39
标识
DOI:10.1007/s00330-019-06558-1
摘要

To develop a machine learning–based ultrasound (US) radiomics model for predicting tumour deposits (TDs) preoperatively. From December 2015 to December 2017, 127 patients with rectal cancer were prospectively enrolled and divided into training and validation sets. Endorectal ultrasound (ERUS) and shear-wave elastography (SWE) examinations were conducted for each patient. A total of 4176 US radiomics features were extracted for each patient. After the reduction and selection of US radiomics features , a predictive model using an artificial neural network (ANN) was constructed in the training set. Furthermore, two models (one incorporating clinical information and one based on MRI radiomics) were developed. These models were validated by assessing their diagnostic performance and comparing the areas under the curve (AUCs) in the validation set. The training and validation sets included 29 (33.3%) and 11 (27.5%) patients with TDs, respectively. A US radiomics ANN model was constructed. The model for predicting TDs showed an accuracy of 75.0% in the validation cohort. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and AUC were 72.7%, 75.9%, 53.3%, 88.0% and 0.743, respectively. For the model incorporating clinical information, the AUC improved to 0.795. Although the AUC of the US radiomics model was improved compared with that of the MRI radiomics model (0.916 vs. 0.872) in the 90 patients with both ultrasound and MRI data (which included both the training and validation sets), the difference was nonsignificant (p = 0.384). US radiomics may be a potential model to accurately predict TDs before therapy. • We prospectively developed an artificial neural network model for predicting tumour deposits based on US radiomics that had an accuracy of 75.0%. • The area under the curve of the US radiomics model was improved than that of the MRI radiomics model (0.916 vs. 0.872), but the difference was not significant (p = 0.384). • The US radiomics–based model may potentially predict TDs accurately before therapy, but this model needs further validation with larger samples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱吃麻辣烫完成签到,获得积分20
1秒前
Cooper应助冷傲妙梦采纳,获得10
1秒前
李健的小迷弟应助我是AY采纳,获得10
1秒前
科研通AI6.1应助小早采纳,获得10
1秒前
lizhiqian2024发布了新的文献求助10
2秒前
现代的黄豆完成签到,获得积分10
2秒前
黄晓杰2024发布了新的文献求助10
2秒前
对对对完成签到,获得积分10
3秒前
3秒前
波罗蜜完成签到,获得积分20
3秒前
4秒前
小方发布了新的文献求助10
4秒前
4秒前
yuansou发布了新的文献求助10
4秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
laj驳回了Owen应助
5秒前
嚭嚭发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
5秒前
6秒前
Felix完成签到,获得积分10
6秒前
领导范儿应助lizhiqian2024采纳,获得10
6秒前
八点半应助小晨晨采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
7秒前
SciGPT应助小魚儿采纳,获得10
7秒前
SHAO发布了新的文献求助30
8秒前
koi发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
9秒前
llll完成签到,获得积分20
9秒前
10秒前
libra发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759707
求助须知:如何正确求助?哪些是违规求助? 5521712
关于积分的说明 15395175
捐赠科研通 4896734
什么是DOI,文献DOI怎么找? 2633863
邀请新用户注册赠送积分活动 1581925
关于科研通互助平台的介绍 1537410