清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Preoperative prediction of tumour deposits in rectal cancer by an artificial neural network–based US radiomics model

医学 无线电技术 神经组阅片室 超声波 放射科 人工神经网络 机器学习 人工智能 磁共振成像 神经学 计算机科学 精神科
作者
Li‐Da Chen,Wei Li,Meng‐Fei Xian,Xin Zheng,Yuan Lin,Baoxian Liu,Manxia Lin,Xin Li,Yanling Zheng,Xiaoyan Xie,Ming‐De Lu,Ming Kuang,Jianbo Xu,Wei Wang
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:30 (4): 1969-1979 被引量:39
标识
DOI:10.1007/s00330-019-06558-1
摘要

To develop a machine learning–based ultrasound (US) radiomics model for predicting tumour deposits (TDs) preoperatively. From December 2015 to December 2017, 127 patients with rectal cancer were prospectively enrolled and divided into training and validation sets. Endorectal ultrasound (ERUS) and shear-wave elastography (SWE) examinations were conducted for each patient. A total of 4176 US radiomics features were extracted for each patient. After the reduction and selection of US radiomics features , a predictive model using an artificial neural network (ANN) was constructed in the training set. Furthermore, two models (one incorporating clinical information and one based on MRI radiomics) were developed. These models were validated by assessing their diagnostic performance and comparing the areas under the curve (AUCs) in the validation set. The training and validation sets included 29 (33.3%) and 11 (27.5%) patients with TDs, respectively. A US radiomics ANN model was constructed. The model for predicting TDs showed an accuracy of 75.0% in the validation cohort. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and AUC were 72.7%, 75.9%, 53.3%, 88.0% and 0.743, respectively. For the model incorporating clinical information, the AUC improved to 0.795. Although the AUC of the US radiomics model was improved compared with that of the MRI radiomics model (0.916 vs. 0.872) in the 90 patients with both ultrasound and MRI data (which included both the training and validation sets), the difference was nonsignificant (p = 0.384). US radiomics may be a potential model to accurately predict TDs before therapy. • We prospectively developed an artificial neural network model for predicting tumour deposits based on US radiomics that had an accuracy of 75.0%. • The area under the curve of the US radiomics model was improved than that of the MRI radiomics model (0.916 vs. 0.872), but the difference was not significant (p = 0.384). • The US radiomics–based model may potentially predict TDs accurately before therapy, but this model needs further validation with larger samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沙海沉戈完成签到,获得积分0
7秒前
无悔完成签到 ,获得积分10
10秒前
30秒前
负责以山完成签到 ,获得积分10
32秒前
zzzzz发布了新的文献求助10
35秒前
烟雨江南完成签到,获得积分10
38秒前
wyh295352318完成签到 ,获得积分10
52秒前
量子星尘发布了新的文献求助10
1分钟前
zzzzz完成签到,获得积分10
1分钟前
1分钟前
1分钟前
刘刘完成签到 ,获得积分10
2分钟前
hyxu678完成签到,获得积分10
2分钟前
雷小牛完成签到 ,获得积分10
2分钟前
小蝴蝶完成签到,获得积分20
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
小蝴蝶发布了新的文献求助10
3分钟前
Binggo完成签到,获得积分10
3分钟前
3分钟前
3分钟前
搞怪莫茗发布了新的文献求助10
3分钟前
Lillianzhu1完成签到,获得积分10
3分钟前
3分钟前
淡定的幻枫完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
yao完成签到 ,获得积分10
4分钟前
幸福的鑫鹏完成签到 ,获得积分10
4分钟前
4分钟前
搞怪莫茗完成签到,获得积分10
4分钟前
典雅的荣轩完成签到,获得积分10
4分钟前
搞怪莫茗发布了新的文献求助10
4分钟前
CJY完成签到 ,获得积分10
5分钟前
天天开心完成签到 ,获得积分10
5分钟前
半糖去冰小丫丫完成签到,获得积分10
5分钟前
害羞的雁易完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助50
6分钟前
6分钟前
冷傲半邪完成签到,获得积分10
6分钟前
司空天德发布了新的文献求助10
6分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015363
求助须知:如何正确求助?哪些是违规求助? 3555313
关于积分的说明 11317959
捐赠科研通 3288629
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 811983