Preoperative prediction of tumour deposits in rectal cancer by an artificial neural network–based US radiomics model

医学 无线电技术 神经组阅片室 超声波 放射科 人工神经网络 机器学习 人工智能 磁共振成像 神经学 计算机科学 精神科
作者
Li‐Da Chen,Wei Li,Meng‐Fei Xian,Xin Zheng,Yuan Lin,Baoxian Liu,Manxia Lin,Xin Li,Yanling Zheng,Xiaoyan Xie,Ming‐De Lu,Ming Kuang,Jianbo Xu,Wei Wang
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:30 (4): 1969-1979 被引量:39
标识
DOI:10.1007/s00330-019-06558-1
摘要

To develop a machine learning–based ultrasound (US) radiomics model for predicting tumour deposits (TDs) preoperatively. From December 2015 to December 2017, 127 patients with rectal cancer were prospectively enrolled and divided into training and validation sets. Endorectal ultrasound (ERUS) and shear-wave elastography (SWE) examinations were conducted for each patient. A total of 4176 US radiomics features were extracted for each patient. After the reduction and selection of US radiomics features , a predictive model using an artificial neural network (ANN) was constructed in the training set. Furthermore, two models (one incorporating clinical information and one based on MRI radiomics) were developed. These models were validated by assessing their diagnostic performance and comparing the areas under the curve (AUCs) in the validation set. The training and validation sets included 29 (33.3%) and 11 (27.5%) patients with TDs, respectively. A US radiomics ANN model was constructed. The model for predicting TDs showed an accuracy of 75.0% in the validation cohort. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and AUC were 72.7%, 75.9%, 53.3%, 88.0% and 0.743, respectively. For the model incorporating clinical information, the AUC improved to 0.795. Although the AUC of the US radiomics model was improved compared with that of the MRI radiomics model (0.916 vs. 0.872) in the 90 patients with both ultrasound and MRI data (which included both the training and validation sets), the difference was nonsignificant (p = 0.384). US radiomics may be a potential model to accurately predict TDs before therapy. • We prospectively developed an artificial neural network model for predicting tumour deposits based on US radiomics that had an accuracy of 75.0%. • The area under the curve of the US radiomics model was improved than that of the MRI radiomics model (0.916 vs. 0.872), but the difference was not significant (p = 0.384). • The US radiomics–based model may potentially predict TDs accurately before therapy, but this model needs further validation with larger samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
可爱的函函应助wu采纳,获得10
刚刚
文献完成签到 ,获得积分10
刚刚
1秒前
卡比兽发布了新的文献求助10
1秒前
王治清完成签到 ,获得积分10
1秒前
lulu发布了新的文献求助10
1秒前
Icebear完成签到,获得积分10
2秒前
薛妖怪完成签到,获得积分10
2秒前
王晨旭发布了新的文献求助10
3秒前
CodeCraft应助可靠的马里奥采纳,获得10
3秒前
3秒前
4秒前
NexusExplorer应助jiangzong采纳,获得10
5秒前
5秒前
坚强听兰发布了新的文献求助20
6秒前
dongfang发布了新的文献求助30
6秒前
64658应助冷冷采纳,获得10
7秒前
Icebear发布了新的文献求助10
7秒前
7秒前
Ll完成签到 ,获得积分10
8秒前
8秒前
8秒前
Karina发布了新的文献求助10
8秒前
9秒前
yg发布了新的文献求助10
9秒前
浮游应助普拉亚采纳,获得10
9秒前
无花果应助solarson采纳,获得10
10秒前
lulu完成签到,获得积分10
11秒前
小医森完成签到 ,获得积分10
11秒前
小情绪完成签到,获得积分10
11秒前
zwjy完成签到,获得积分10
11秒前
奇异果熊猫人完成签到,获得积分10
12秒前
积极三毒完成签到,获得积分10
12秒前
稽TR发布了新的文献求助10
13秒前
薛妖怪完成签到,获得积分10
13秒前
15秒前
乐乐应助你是我的唯一采纳,获得10
15秒前
量子星尘发布了新的文献求助20
15秒前
浮游应助赵梓蓉采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4921870
求助须知:如何正确求助?哪些是违规求助? 4192846
关于积分的说明 13023419
捐赠科研通 3964423
什么是DOI,文献DOI怎么找? 2172981
邀请新用户注册赠送积分活动 1190624
关于科研通互助平台的介绍 1099807