计算机科学
人工智能
卷积神经网络
模式识别(心理学)
稳健性(进化)
壁画
计算机视觉
绘画
生物化学
基因
艺术
视觉艺术
化学
作者
Jianfang Cao,Hongyan Cui,Qi Zhang,Zibang Zhang
标识
DOI:10.1080/00393630.2019.1706304
摘要
As an important part of art and culture, ancient murals depict a variety of different artistic images, and these individual images have important research value. For research purposes, it is often important to first determine the type of objects represented in a painting. However, the mural painting environment makes datasets difficult to collect, and long-term exposure leads to underlying features that are not distinct, which makes this task challenging. This study proposes a convolutional neural network model based on the classic AlexNet network model and combines it with feature fusion to automatically classify ancient mural images. Due to the lack of large-scale mural datasets, the model first expands the dataset by applying image enhancement algorithms such as scaling, brightness conversion, noise addition, and flipping; then, it extracts the underlying features (such as fresco edges) shared by the first stage of a dual channel structure. Subsequently, a second-stage deep abstraction is conducted on the features extracted by the first stage using a two-channel network, each of which has a different structure. The obtained characteristics from both channels are merged, and a loss function is constructed to obtain the classification result. This approach improves the model's robustness and feature expression ability. The model achieves an accuracy of 84.24%, a recall rate of 84.15%, and an F1-measure of 84.13% when applied to a constructed mural image dataset. Compared with the AlexNet model and other improved convolutional neural network models, the proposed model improves each evaluation index by approximately 5%, verifying the rationality and effectiveness of the model for automatic mural image classification. The mural classification model proposed in this paper comprehensively considers the influences of network width and depth and can extract rich details from mural images from multiple local channels. An effective classification method could help researchers manage and protect mural images in an orderly fashion and quickly and effectively search for target images in a digital mural library based on a specified image category, aiding mural condition monitoring and restoration efforts as well as archaeological and art historical research.
科研通智能强力驱动
Strongly Powered by AbleSci AI