Ancient Mural Classification Method Based on Improved AlexNet Network

计算机科学 人工智能 卷积神经网络 模式识别(心理学) 稳健性(进化) 壁画 计算机视觉 绘画 艺术 视觉艺术 生物化学 化学 基因
作者
Jianfang Cao,Hongyan Cui,Qi Zhang,Zibang Zhang
出处
期刊:Studies in Conservation [Taylor & Francis]
卷期号:65 (7): 411-423 被引量:11
标识
DOI:10.1080/00393630.2019.1706304
摘要

As an important part of art and culture, ancient murals depict a variety of different artistic images, and these individual images have important research value. For research purposes, it is often important to first determine the type of objects represented in a painting. However, the mural painting environment makes datasets difficult to collect, and long-term exposure leads to underlying features that are not distinct, which makes this task challenging. This study proposes a convolutional neural network model based on the classic AlexNet network model and combines it with feature fusion to automatically classify ancient mural images. Due to the lack of large-scale mural datasets, the model first expands the dataset by applying image enhancement algorithms such as scaling, brightness conversion, noise addition, and flipping; then, it extracts the underlying features (such as fresco edges) shared by the first stage of a dual channel structure. Subsequently, a second-stage deep abstraction is conducted on the features extracted by the first stage using a two-channel network, each of which has a different structure. The obtained characteristics from both channels are merged, and a loss function is constructed to obtain the classification result. This approach improves the model's robustness and feature expression ability. The model achieves an accuracy of 84.24%, a recall rate of 84.15%, and an F1-measure of 84.13% when applied to a constructed mural image dataset. Compared with the AlexNet model and other improved convolutional neural network models, the proposed model improves each evaluation index by approximately 5%, verifying the rationality and effectiveness of the model for automatic mural image classification. The mural classification model proposed in this paper comprehensively considers the influences of network width and depth and can extract rich details from mural images from multiple local channels. An effective classification method could help researchers manage and protect mural images in an orderly fashion and quickly and effectively search for target images in a digital mural library based on a specified image category, aiding mural condition monitoring and restoration efforts as well as archaeological and art historical research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gzl发布了新的文献求助10
1秒前
小马甲应助心灵美绝施采纳,获得10
1秒前
asdfg发布了新的文献求助10
1秒前
2秒前
丰那个丰发布了新的文献求助10
3秒前
大个应助小猫宝采纳,获得10
3秒前
3秒前
略略略完成签到,获得积分10
3秒前
汉堡包应助EED采纳,获得10
3秒前
坦率的匪举报xz求助涉嫌违规
4秒前
顾矜应助Deny采纳,获得10
5秒前
杪秋三十发布了新的文献求助30
6秒前
zy发布了新的文献求助10
6秒前
陈鑫发布了新的文献求助10
6秒前
111发布了新的文献求助10
6秒前
7秒前
winwin完成签到,获得积分10
7秒前
结实盼烟完成签到,获得积分10
8秒前
sunchengcehng发布了新的文献求助30
9秒前
Alinf完成签到,获得积分10
9秒前
9秒前
Alan完成签到,获得积分10
9秒前
10秒前
10秒前
Ava应助丰那个丰采纳,获得10
11秒前
田様应助停婷采纳,获得10
12秒前
12秒前
时尚的大碗完成签到,获得积分10
12秒前
rmhayze完成签到,获得积分10
12秒前
13秒前
EASA完成签到,获得积分10
13秒前
萤阳完成签到,获得积分10
13秒前
水木应助CC采纳,获得10
14秒前
ljys发布了新的文献求助10
14秒前
匿名发布了新的文献求助30
14秒前
xx完成签到,获得积分10
15秒前
卫卫完成签到 ,获得积分10
15秒前
木悠发布了新的文献求助10
15秒前
leodu发布了新的文献求助10
16秒前
Ann完成签到,获得积分10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653