Ancient Mural Classification Method Based on Improved AlexNet Network

计算机科学 人工智能 卷积神经网络 模式识别(心理学) 稳健性(进化) 壁画 计算机视觉 绘画 生物化学 基因 艺术 视觉艺术 化学
作者
Jianfang Cao,Hongyan Cui,Qi Zhang,Zibang Zhang
出处
期刊:Studies in Conservation [Informa]
卷期号:65 (7): 411-423 被引量:11
标识
DOI:10.1080/00393630.2019.1706304
摘要

As an important part of art and culture, ancient murals depict a variety of different artistic images, and these individual images have important research value. For research purposes, it is often important to first determine the type of objects represented in a painting. However, the mural painting environment makes datasets difficult to collect, and long-term exposure leads to underlying features that are not distinct, which makes this task challenging. This study proposes a convolutional neural network model based on the classic AlexNet network model and combines it with feature fusion to automatically classify ancient mural images. Due to the lack of large-scale mural datasets, the model first expands the dataset by applying image enhancement algorithms such as scaling, brightness conversion, noise addition, and flipping; then, it extracts the underlying features (such as fresco edges) shared by the first stage of a dual channel structure. Subsequently, a second-stage deep abstraction is conducted on the features extracted by the first stage using a two-channel network, each of which has a different structure. The obtained characteristics from both channels are merged, and a loss function is constructed to obtain the classification result. This approach improves the model's robustness and feature expression ability. The model achieves an accuracy of 84.24%, a recall rate of 84.15%, and an F1-measure of 84.13% when applied to a constructed mural image dataset. Compared with the AlexNet model and other improved convolutional neural network models, the proposed model improves each evaluation index by approximately 5%, verifying the rationality and effectiveness of the model for automatic mural image classification. The mural classification model proposed in this paper comprehensively considers the influences of network width and depth and can extract rich details from mural images from multiple local channels. An effective classification method could help researchers manage and protect mural images in an orderly fashion and quickly and effectively search for target images in a digital mural library based on a specified image category, aiding mural condition monitoring and restoration efforts as well as archaeological and art historical research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
活泼酸奶完成签到,获得积分10
2秒前
3秒前
3秒前
mixieer发布了新的文献求助10
4秒前
8秒前
渝安发布了新的文献求助10
8秒前
9秒前
llnysl完成签到 ,获得积分10
9秒前
smh完成签到,获得积分10
11秒前
13秒前
byyyy发布了新的文献求助10
15秒前
魔幻山芙发布了新的文献求助10
18秒前
红枫没有微雨怜完成签到 ,获得积分10
18秒前
19秒前
wangxc完成签到 ,获得积分10
21秒前
felicity完成签到 ,获得积分10
21秒前
汉堡包应助陈启10000采纳,获得10
22秒前
Wenpandaen发布了新的文献求助10
22秒前
漠漠完成签到 ,获得积分10
22秒前
小二郎应助云_123采纳,获得10
26秒前
pluto应助Seren采纳,获得50
27秒前
28秒前
29秒前
不配.应助Moonflower采纳,获得20
30秒前
felicia12138完成签到 ,获得积分10
31秒前
MEEW发布了新的文献求助10
31秒前
苹果书兰完成签到 ,获得积分10
33秒前
34秒前
36秒前
Zr完成签到,获得积分10
36秒前
慕青应助西门访天采纳,获得10
36秒前
CipherSage应助Luigi采纳,获得10
37秒前
Jun完成签到 ,获得积分10
37秒前
云_123发布了新的文献求助10
38秒前
lindsay完成签到,获得积分10
38秒前
完美世界应助长孙归尘采纳,获得10
39秒前
大个应助Wenpandaen采纳,获得10
43秒前
44秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134935
求助须知:如何正确求助?哪些是违规求助? 2785802
关于积分的说明 7774295
捐赠科研通 2441699
什么是DOI,文献DOI怎么找? 1298093
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825